Phương trình đường thẳng

Lý thuyết về phương trình đường thẳng môn toán lớp 12 với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(405) 1351 23/09/2022

1. Kiến thức cần nhớ

- Phương trình tham số của đường thẳng: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\left( {t \in \mathbb{R}} \right)\)

ở đó \(M\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thuộc dường thẳng và \(\overrightarrow u  = \left( {a;b;c} \right)\)  là VTCP của đường thẳng.

- Phương trình chính tắc của đường thẳng: \(\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\left( {a,b,c \ne 0} \right)\)

ở đó \(M\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thuộc dường thẳng và \(\overrightarrow u  = \left( {a;b;c} \right)\)  là VTCP của đường thẳng.

- Đường thẳng \(Ox:\left\{ \begin{array}{l}x = t\\y = 0\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right);\) \(Oy:\left\{ \begin{array}{l}x = 0\\y = t\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right);\) \(Oz:\left\{ \begin{array}{l}x = 0\\y = 0\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\)

- Đường thẳng \(AB\) có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB} \)

- Đường thẳng \({d_1}//{d_2} \Rightarrow \overrightarrow {{u_1}}  = \overrightarrow {{u_2}} \)

2. Một số dạng toán thường gặp

Dạng 1: Nhận biết các yếu tố trong phương trình đường thẳng.

Phương pháp:

Sử dụng các lý thuyết về phương trình đường thẳng để tìm điểm đi qua, VTCP,…

Dạng 2: Chuyển đổi các dạng phương trình chính tắc và tham số.

Phương pháp:

- Bước 1: Tìm điểm đi qua và VTCP của đường thẳng trong phương trình đã cho.

- Bước 2: Viết phương trình dạng chính tắc, tham số dựa vào hai yếu tố vừa xác định được ở trên.

Đường thẳng \(d\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có VTCP \(\overrightarrow u  = \left( {a;b;c} \right)\) thì có:

+ Phương trình chính tắc: \(\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\left( {a,b,c \ne 0} \right)\)

+ Phương trình tham số: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\left( {t \in \mathbb{R}} \right)\)

Dạng 3: Viết phương trình đường thẳng.

Phương pháp chung:

- Bước 1: Tìm điểm đi qua \(A\).

- Bước 2: Tìm VTCP \(\overrightarrow u \) của đường thẳng.

- Bước 3: Viết phương trình tham số hoặc chính tắc của đường thẳng biết hai yếu tố trên.

+) Đi qua hai điểm.

Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow {AB} \) làm VTCP.

+) Đi qua một điểm và song song với một đường thẳng.

Đường thẳng \(d\) qua \(A\) và song song với \(d'\) thì \(d\) có VTCP \(\overrightarrow {{u_d}}  = \overrightarrow {{u_{d'}}} \)

+) Đi qua một điểm và vuông góc với hai đường thẳng.

Đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với hai đường thẳng \({d_1},{d_2}\) thì \(d\) có VTCP \(\overrightarrow u  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\)

(405) 1351 23/09/2022