Hệ tọa độ trong không gian (tích có hướng và ứng dụng)

Lý thuyết về tích có hướng và ứng dụng môn toán lớp 12 với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(411) 1369 23/09/2022

1. Tích có hướng của hai véc tơ

- Định nghĩa: Cho các véc tơ u1=(x1;y1;z1)u2=(x2;y2;z2). Tích có hướng của hai véc tơ u1,u2 là véc tơ u, kí hiệu  u=[u1,u2] hoặc u=u1u2 và được xác định bằng tọa độ như sau:

[u1,u2]= (|y1y2z1z2|;|z1z2x1x2|;|x1x2y1y2|)= (y1z2y2z1;z1x2z2x1;x1y2x2y1)

Véc tơ u vuông góc với cả hai véc tơ u1u2

- Tính chất:

+) [u1;u2]=[u2;u1]

+) [u1;u2]=0u1 cùng phương u2

+) [u1;u2]u1;[u1;u2]u2

+) [u1;u2].u3=0 ba véc tơ u1,u2,u3  đồng phẳng.

+) |[u1;u2]|=|u1|.|u2|sin(u1,u2)

2. Ứng dụng tích có hướng

- Diện tích tam giác:

SABC=12|[AB,AC]|

- Diện tích hình bình hành:

SABCD=|[AB,AD]|=|[AB,AC]|

- Thể tích tứ diện:

VABCD=16|[AB,AC].AD|

- Thể tích khối hộp:

VABCD.ABCD=|[AB,AD].AA|

Chú ý: Khi thực hành tính toán, các em có thể tính tích có hướng ở ngoài nháp như sau:

+B1: Viết tọa độ mỗi véc tơ hai lần liền nhau, các tọa độ tương ứng của hai véc tơ thẳng cột.

x1y1z1x1y1z1x2y2z2x2y2z2

+ B2: Xóa bỏ hai cột ngoài cùng.

+ B3: Tính toán theo quy luật: Nhân chéo rồi trừ.

Ví dụ: Cho hai véc tơ u=(1;5;3)v=(2;1;0). Tính tích có hướng của hai véc tơ trên.

Giải:

Ta sẽ sử dụng phương pháp thực hành ở trên như sau: (chỉ viết ngoài nháp)

Vậy [u,v]=(3;6;11).

(411) 1369 23/09/2022