Phương pháp giải các bài toán về điểm và véc tơ

Phương pháp giải các bài toán liên quan đến tọa độ điểm và véc tơ MÔN TOÁN Lớp 12 kèm bài tập vận dụng
(387) 1291 23/09/2022

Dạng 1: Tìm tọa độ điểm đặc biệt.

Phương pháp:

Sử dụng định nghĩa điểm, điểm thuộc các trục tọa độ, điểm thuộc các mặt phẳng tọa độ và các tọa độ điểm đặc biệt như:

- Trung điểm \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\)

- Trọng tâm tam giác \(G( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} )\)

- Trọng tâm tứ diện

\( ( {\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}} ) \)

Dạng 2: Tìm mối quan hệ giữa các véc tơ.

Phương pháp chung:

Sử dụng các lý thuyết về véc tơ bằng nhau, cùng phương, vuông góc, đồng phẳng,… để xét mối quan hệ giữa các véc tơ.

Dạng 3: Ứng dụng tích có hướng để tính diện tích, thể tích.

Phương pháp:

Sử dụng các công thức diện tích, thể tích để tính.

Dạng 4: Tìm tọa độ điểm thỏa mãn điều kiện cho trước.

Phương pháp:

- Bước 1: Gọi tọa độ điểm theo tham số (thường là thuộc đường thẳng, thuộc mặt phẳng,…).

- Bước 2: Thay tọa độ điểm vào điều kiện đề bài để tìm tham số, từ đó ta được kết quả cần tìm.

(387) 1291 23/09/2022