Phương pháp giải các bài toán về mặt cầu và mặt phẳng

Phương pháp giải các bài toán về mặt cầu và mặt phẳng MÔN TOÁN Lớp 12 kèm bài tập vận dụng
(413) 1377 23/09/2022

1. Kiến thức cần nhớ

Cho mặt phẳng (P) và mặt cầu (S) tâm I bán kính R. Khi đó:

- (S)(P)=d(I,(P))>R.

- (S)(P)={H}d(I,(P))=R.

ở đó, H là tiếp điểm, (P) là tiếp diện và OH(P) tại H.

- (S)(P)=C(H;r)d(I,(P))<R.

ở đó : với H là hình chiếu của I trên (P).

Đặc biệt: d(I,(P))=0 hay (P) đi qua I thì (S)(P)=C(I;R).

C(I;R) được gọi là đường tròn lớn, (P) là mặt phẳng kính.

2. Một số dạng toán thường gặp

Dạng 1: Viết phương trình mặt cầu tiếp xúc hoặc cắt mặt phẳng cho trước.

Phương pháp:

- Bước 1: Tính bán kính mặt cầu dựa vào các điều kiện bài cho:

+ Tiếp xúc mặt phẳng nếu d(I,(P))=R

+ Cắt mặt phẳng theo giao tuyến và đường tròn bán kính r thì R2=r2+d2(I,(P))

- Bước 2: Viết phương trình mặt cầu biết tâm và bán kính.

Dạng 2: Viết phương trình mặt phẳng (P) tiếp xúc, giao với mặt cầu cho trước.

Phương pháp:

- Bước 1: Tìm VTPT của mặt phẳng (P) dựa vào điều kiện bài cho.

+ Tiếp xúc mặt cầu tại điểm H thì nP=IH

+ Trường hợp (P) song song với mặt phẳng (Q):ax+by+cz+d=0 (a,b,c,d là các số cho trước) và cắt mặt cầu theo đường tròn có bán kính r thì nP=nQ tức là (P):ax+by+cz+d=0.

d(I,(P))=R2r2.

- Bước 2: Viết phương trình mặt phẳng.

+ Tiếp xúc mặt cầu tại điểm H: Xác định điểm H rồi lập phương trình mặt phẳng.

+ Trường hợp (P) song song với mặt phẳng (Q):ax+by+cz+d=0 (a,b,c,d là các số cho trước) và cắt mặt cầu theo đường tròn có bán kính r:

Sử dụng d(I,(P))=R2r2 để tìm d'.

(413) 1377 23/09/2022