Đề kiểm tra giữa học kì 2 - Đề số 1
-
Hocon247
-
50 câu hỏi
-
90 phút
-
258 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho tứ diện \(ABCD\) và \(G\) là trọng tâm tứ diện. Chọn kết luận đúng:
Do \(G\) là trọng tâm tứ diện \(ABCD\) nên \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} + {x_D} = 4{x_G}\\{y_A} + {y_B} + {y_C} + {y_D} = 4{y_G}\\{z_A} + {z_B} + {z_C} + {z_D} = 4{z_G}\end{array} \right.\)
Hướng dẫn giải:
Tọa độ trọng tâm tứ diện \(ABCD\) là \(G\left( {\dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};\dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}} \right)\)
Cho \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\) là cặp VTCP của mặt phẳng \(\left( P \right)\). Véc tơ nào sau đây là một véc tơ pháp tuyến của \(\left( P \right)\)?
Ta có: \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\)
\(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 3\end{array}&\begin{array}{l}3\\ - 5\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 5\end{array}&\begin{array}{l}5\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}5\\ - 1\end{array}&\begin{array}{l}1\\ - 3\end{array}\end{array}} \right|} \right) = \left( {4;22; - 14} \right)\)
Do đó \(\overrightarrow n = \left( {4;22; - 14} \right)\) là một VTPT của \(\left( P \right)\) nên \(\dfrac{1}{2}\overrightarrow n = \left( {2;11; - 7} \right)\) cũng là một VTPT của \(\left( P \right)\).
Hướng dẫn giải:
Nếu \(\overrightarrow a ,\overrightarrow b \) là cặp VTCP của \(\left( P \right)\) thì \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) là một VTPT của \(\left( P \right)\).
Giải thích thêm:
- Một số em có thể sẽ chọn nhầm đáp án C vì tính sai tích có hướng của hai véc tơ.
- Có thể làm bài toán bằng cách thử đáp án với chú ý: VTPT vuông góc với cả hai VTCP.
Cụ thể: \(\left( {1;2;0} \right).\left( {5;1;3} \right) \ne 0\) nên loại.
\(\left( {2;11; - 7} \right).\left( {5;1;3} \right) = 0;\left( {2;11; - 7} \right).\left( { - 1; - 3; - 5} \right) = 0\) nên B đúng.
Đồ thị sau là đồ thị hàm số nào?

Dáng đồ thị là của hàm số \(y = {a^x}\) với \(a > 1\) nên loại A và C.
Đồ thị hàm số đi qua điểm \(\left( {1;3} \right)\) nên chỉ có D thỏa mãn.
Hướng dẫn giải:
- Bước 1: Quan sát dáng đồ thị, tính đơn điệu,…của các đồ thị bài cho.
- Bước 2: Đối chiếu với hàm số bài cho và chọn kết luận.
Giải thích thêm:
Nhiều HS không để ý điểm đi qua sẽ chọn nhầm đáp án B là sai, một số em khác loại ngay đáp án D vì thấy \(\dfrac{1}{3} < 1\) nên cũng đi đến đáp án sai.
Chọn mệnh đề đúng:
Ta có: \(y = {\left( {\dfrac{1}{2}} \right)^{ - x}} = \dfrac{1}{{{{\left( {\dfrac{1}{2}} \right)}^x}}} = \dfrac{1}{{\dfrac{1}{{{2^x}}}}} = {2^x}\) nên hai hàm số \(y = {2^x}\) và \(y = {\left( {\dfrac{1}{2}} \right)^{ - x}}\) là một. Do đó chúng có chung đồ thị.
Hướng dẫn giải:
Biến đổi các hàm số mũ và nhận xét đồ thị của chúng
Giải thích thêm:
Nhiều HS sẽ chọn nhầm đáp án D vì thấy \(2\) và \(\dfrac{1}{2}\) là nghịch đảo của nhau và \( - x,x\) đối nhau.
Thể tích vật thể nằm giữa hai mặt phẳng \(x=0\) và \(x=2\), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( 0\le x\le 2 \right)\) là một nửa đường tròn đường kính \(\sqrt{5}{{x}^{2}}\) bằng :
Diện tích nửa hình tròn đường kính \(\sqrt{5}{{x}^{2}}\) là \(S\left( x \right)=\frac{1}{2}.\pi {{\left( \frac{\sqrt{5}{{x}^{2}}}{2} \right)}^{2}}=\frac{5\pi {{x}^{4}}}{8}\).
Vậy \(V=\int\limits_{0}^{2}{S\left( x \right)dx}=\int\limits_{0}^{2}{\frac{5\pi {{x}^{4}}}{8}dx}=\frac{5\pi }{8}\left. \frac{{{x}^{5}}}{5} \right|_{0}^{2}=4\pi \).
Hướng dẫn giải:
Sử dụng công thức tính thể tích \(V=\int\limits_{a}^{b}{S\left( x \right)dx}\).
Cho hình trụ có bán kính đáy bằng \(a\). Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng \(\dfrac{a}{2}\) ta được thiết diện là một hình vuông. Tính thể tích khối trụ.
Gọi $\left( O \right)$ là một đường tròn đáy của hình trụ
Mặt phẳng đã cho cắt $\left( O \right)$ tại $A$ và $B$, gọi $H$ là trung điểm $AB$.
Vì thiết diện thu được là hình vuông nên chiều cao hình trụ bằng
$h = AB = 2AH = 2\sqrt {O{A^2} - O{H^2}} = a\sqrt 3 $
Thể tích khối trụ là
$V = \pi {R^2}h = \pi {a^2}.a\sqrt 3 = \pi {a^3}\sqrt 3 $

Hướng dẫn giải:
- Tính chiều cao hình trụ dựa vào định lý Pi-ta-go.
- Tính thể tích khối trụ dựa vào công thức \(V = \pi {R^2}h\)
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án B vì sau khi tính được \(AH = \dfrac{{a\sqrt 3 }}{2}\) thì tính ngay thể tích \(V = \dfrac{{\pi {a^3}\sqrt 3 }}{2}\) là sai.
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Khối đa diện lồi có \(D\) đỉnh, \(M\) mặt và \(N\) cạnh thì \(D - C + M = 2\).
Giải thích thêm:
Một số em sẽ chọn sai đáp án B hặc D vì nhớ nhầm công thức.
Thể tích của vật tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm \(y=\tan x\), trục \(Ox\), đường thẳng \(x=0\), đường thẳng \(x=\frac{\pi }{3}\) quanh trục \(Ox\) là
Thể tích của vật tròn xoay là
\(V=\pi \int\limits_{0}^{\frac{\pi }{3}}{{{\tan }^{2}}x\text{d}x}\)\(=\pi \int\limits_{0}^{\frac{\pi }{3}}{\left( \frac{1}{{{\cos }^{2}}x}-1 \right)\text{d}x}\)\(=\pi \left. \left( \tan x-x \right) \right|_{0}^{\frac{\pi }{3}}\)\(=\pi \left( \tan \frac{\pi }{3}-\frac{\pi }{3} \right)\)\(=\pi \sqrt{3}-\frac{{{\pi }^{2}}}{3}\).
Hướng dẫn giải:
Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right),\,\,y=0,\,\,\,x=a,\,\,x=b\) quanh $Ox$ là \(V=\pi \int\limits_{a}^{b}{{{f}^{2}}\left( x \right)\,\text{d}x}\)
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Ta có: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)
$= \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( { - 1 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2}} = \sqrt 9 = 3$
Do đó độ dài đoạn thẳng là một số nguyên dương.
Hướng dẫn giải:
Sử dụng công thức tính độ dài đoạn thẳng biết hai đầu mút \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)
Giải thích thêm:
Một số em áp dụng sai công thức tính độ dài đoạn thẳng \(AB = \sqrt {{{\left( {{x_B} + {x_A}} \right)}^2} + {{\left( {{y_B} + {y_A}} \right)}^2} + {{\left( {{z_B} + {z_A}} \right)}^2}} \) dẫn đến chọn nhầm đáp án B là sai.
Độ dài đoạn thẳng không thể là số âm, nó bằng $0$ nếu hai đầu mút trùng nhau nên ta có thể loại ngay đáp án A và D.
Tìm tất cả các giá trị của $m$ để hàm số $y = - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$
TXĐ $D = \mathbb{R}$
$y' = - {x^2} + \dfrac{2}{3}mx \Rightarrow y'' = - 2x + \dfrac{2}{3}m$
Hàm số đã cho đạt cực đại tại $x = 2$
$ \Leftrightarrow \left\{ \begin{gathered} y'(2) = 0 \hfill \\ y''\left( 2 \right) < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} - {2^2} + \dfrac{2}{3}m.2 = 0 \hfill \\ - 2.2 + \dfrac{2}{3}m. < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} - 4 + \dfrac{4}{3}m = 0 \hfill \\- 4 + \dfrac{2}{3}m < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} m = 3 \hfill \\m < 6 \hfill \\ \end{gathered} \right. \Leftrightarrow m = 3$
Hướng dẫn giải:
- Bước 1: Tính $y',y''$.
- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:
+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered} \right.$
+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$
- Bước 3: Kết luận.
Giải thích thêm:
- Nhiều học sinh chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ mà quên điều kiện $y''\left( {{x_0}} \right) < 0$ dẫn đến kết luận sai.
- Nếu chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ thì sau khi tìm ra $m$ phải thay vào hàm số, kiểm tra xem $x = 2$ có là điểm cực đại của hàm số tìm được hay không.
Cho hàm số \(f\left( x \right) = \dfrac{1}{{{x^2} + 1}}\). Khi đó, nếu đặt \(x = \tan t\) thì:
Ta có: \(x = \tan t \Rightarrow dx=\dfrac{1}{{{{\cos }^2}t}} dt = \left( {1 + {{\tan }^2}t} \right)dt\).
Do đó \(f\left( x \right)dx = \dfrac{1}{{{x^2} + 1}}dx = \dfrac{1}{{{{\tan }^2}t + 1}}\left( {1 + {{\tan }^2}t} \right)dt = dt\)
Hướng dẫn giải:
Áp dụng công thức đổi biến \(f\left( x \right)dx = f\left( {u\left( t \right)} \right).u'\left( t \right)dt\)
Giải thích thêm:
Một số em sau khi tính được \(dx = \left( {1 + {{\tan }^2}t} \right)dt\) thì vội vàng kết luận đáp án A mà quên không thay \(x = \tan t\) vào \(f\left( x \right)\) dẫn đến chọn sai đáp án.
Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Hoành độ giao điểm của \(\left( {{P}_{1}} \right),\,\,\left( {{P}_{2}} \right)\) là nghiệm phương trình: \(a{{x}^{2}}-2=4-2a{{x}^{2}}\Leftrightarrow a{{x}^{2}}=2\Leftrightarrow x=\pm \,\sqrt{\frac{2}{a}}\)
Khi đó, diện tích hình phẳng cần tính là \(S=\int\limits_{-\,\sqrt{\frac{2}{a}}}^{\sqrt{\frac{2}{a}}}{\left| a{{x}^{2}}-2-4+2a{{x}^{2}} \right|\,\text{d}x}=3\int\limits_{-\,\sqrt{\frac{2}{a}}}^{\sqrt{\frac{2}{a}}}{\left| a{{x}^{2}}-2 \right|\,\text{d}x}.\)
\(=3\int\limits_{-\,\sqrt{\frac{2}{a}}}^{\sqrt{\frac{2}{a}}}{\left( 2-a{{x}^{2}} \right)\,\text{d}x}=3\left. \left( 2x-\frac{a{{x}^{3}}}{3} \right) \right|_{-\,t}^{t}=12t-2a{{t}^{3}}\) với \(t=\sqrt{\frac{2}{a}}\)\(\Rightarrow \)\(12\sqrt{\frac{2}{a}}-4\sqrt{\frac{2}{a}}=16\Leftrightarrow a=\frac{1}{2}.\)
Hướng dẫn giải:
Tính diện tích hình phẳng giới hạn bởi \(y=f\left( x \right),\,\,y=g\left( x \right)\)\(\Rightarrow \,\,S=\int\limits_{{{x}_{1}}}^{{{x}_{2}}}{\left| f\left( x \right)-g\left( x \right) \right|\,\text{d}x}\)
Cho hình lăng trụ \(ABC.A'B'C'\) có \(AB = 2a,AC = a,AA' = \dfrac{{a\sqrt {10} }}{2},\widehat {BAC} = {120^0}\). Hình chiếu vuông góc của $C’$ lên $(ABC)$ là trung điểm của cạnh $BC$. Tính thể tích khối lăng trụ \(ABC.A'B'C'\) theo $a$?

Áp dụng định lí Côsin trong tam giác $ABC$ có: \(BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos 120} \)
$= \sqrt {4{a^2} + {a^2} - 2.2a.a.\dfrac{{ - 1}}{2}} = a\sqrt 7 \Rightarrow CH = \dfrac{1}{2}BC = \dfrac{{a\sqrt 7 }}{2}$
\(C'H \bot \left( {ABC} \right) \Rightarrow C'H \bot CH \Rightarrow \Delta CC'H\) vuông tại $H$
\( \Rightarrow C'H = \sqrt {CC{'^2} - C{H^2}} = \sqrt {\dfrac{{10{a^2}}}{4} - \dfrac{{7{a^2}}}{4}} = \dfrac{{a\sqrt 3 }}{2}\)
\({S_{ABC}} = \dfrac{1}{2}AB.AC.\sin 120 = \dfrac{1}{2}.2a.a.\dfrac{{\sqrt 3 }}{2} = \dfrac{{{a^2}\sqrt 3 }}{2}\)
Vậy \({V_{ABC.A'B'C'}} = C'H.{S_{ABC}} = \dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{3{a^3}}}{4}\)
Hướng dẫn giải:
- Tính diện tích đáy \({S_{ABC}}\).
- Tính độ dài đường cao.
- Tính thể tích khối lăng trụ theo công thức \(V = Sh\) với \(S\) là diện tích đáy, \(h\) là chiều cao.
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
Ta có: \({S_{tp}} = 2\pi rh + 2\pi {r^2} = 2\pi .5.3 + 2\pi {.5^2} \approx 251,3c{m^2}\)
Hướng dẫn giải:
Sử dụng công thức tính diện tích toàn phần hình trụ \({S_{tp}} = 2\pi rh + 2\pi {r^2}\)
Giải thích thêm:
Một số em chọn nhầm đáp án C vì áp dụng nhầm công thức \({S_{tp}} = 2\pi rh + \pi {r^2}\) là sai.
Đẳng thức \(\left( {\sqrt[n]{x}} \right)' = ({x^{\frac{1}{n}}})' = \dfrac{1}{n}{x^{ - \frac{{n - 1}}{n}}} = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) xảy ra khi:
Vì \(\sqrt[n]{x} = {x^{\frac{1}{n}}}\) nếu \(x > 0\) nên \(\left( {\sqrt[n]{x}} \right)' = ({x^{\frac{1}{n}}})' = \dfrac{1}{n}{x^{ - \frac{{n - 1}}{n}}} = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) chỉ đúng nếu \(x > 0\).
Hướng dẫn giải:
Sử dụng điều kiện để đẳng thức \(\sqrt[n]{x} = {x^{\frac{1}{n}}}\) xảy ra là \(x > 0\).
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$
+) Xét đáp án A:$y = \sin x - 3x$ có: $y' = \cos x - 3.$
Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \cos x \le 1 \Rightarrow y' = {\rm{cosx\;}} - 3 < 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu} \in R \Rightarrow $ hàm số nghịch biến trên $R.$
Vậy hàm số ở đáp án A không đồng biến trên $R$.
+) Xét đáp án B: $y = \cos x + 2x$ có: $y' = {\rm{\;}} - \sin x + 2.$
Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \sin x \le 1 \Rightarrow y' = {\rm{\;}} - \sin x + 2 > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu} \in R$
Vậy hàm số đồng biến trên $\mathbb{R}.$
+) Xét đáp án C: $y'=3x^2\ge 0, \forall x$ nên hàm số đồng biến trên $R$.
+) Xét đáp án D: $y'=5x^4\ge 0, \forall x$ nên hàm số đồng biến trên $R$.
Vậy chỉ có hàm số ở đáp án A không đồng biến trên $R$.
Hướng dẫn giải:
+) Xét các hàm số theo từng đáp án.
+) Hàm số nào có $y' \ge 0$ với mọi $x \in R$ thì hàm số đó đồng biến trên R.
Đề thi THPT QG – 2021 lần 1– mã 104
Thể tích của khối lập phương cạnh \(2a\) bằng:
Thể tích khối lập phương cạnh \(2a\) là: \(V = {\left( {2a} \right)^3} = 8{a^3}\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích khối lập phương cạnh \(a:V = {a^3}\).
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án A vì đọc không kĩ đề.
Chọn kết luận sai:
Ta có nhận xét nhanh:
Đáp án A: Vì \({x^3} \ge 0,\forall x \in \left[ {0;1} \right]\) nên \(\int\limits_0^1 {{x^3}dx} \ge 0\) hay A đúng.
Đáp án B: Vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} = \left. { - \cos x} \right|_0^{\dfrac{\pi }{2}} = 1 < \dfrac{\pi }{2}\) nên B sai.
Đáp án C: Vì \({x^2} \ge 0,\forall x\) nên \(\int\limits_{ - 1}^1 {{x^2}dx} \ge 0\) nên C đúng.
Đáp án D: Vì \(x \ge \sin x\) với mọi \(x \in \left[ {1;2} \right]\) nên \(\int\limits_1^2 {xdx} \ge \int\limits_1^2 {\sin xdx} \Leftrightarrow \int\limits_1^2 {\left( {x - \sin x} \right)dx} \ge 0\) hay D đúng.
Hướng dẫn giải:
Sử dụng các tính chất:
- Nếu \(f\left( x \right) \ge 0\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge 0\)
- Nếu \(f\left( x \right) \ge g\left( x \right)\) trên \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge \int\limits_a^b {g\left( x \right)dx} \).
Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$ là $M = - 2$. Chọn khẳng định đúng:
Nếu $M = - 2$ là GTLN của hàm số $y = f\left( x \right)$ trên $\left[ {1;3} \right]$ thì $f\left( x \right) \leqslant - 2,\forall x \in \left[ {1;3} \right]$.
Trong các khẳng định sau, khẳng định nào đúng?
Ta có: \(\int\limits_a^b {f\left( x \right)dx} + \int\limits_b^c {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} ;\forall b\in \left[ {a;c} \right]\) đúng nên A đúng.
Nếu \(\int\limits_a^b {f\left( x \right)dx} \ge 0\) thì \(f\left( x \right)\) chưa chắc không âm trên \(\left[ {a;b} \right]\) nên B sai.
\(\int {xdx} = \dfrac{{{x^2}}}{2} + C\) nên C sai.
Nếu \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thì \(\sqrt {F\left( x \right)} \) không phải là nguyên hàm của \(\sqrt {f\left( x \right)} \) nên D sai.
Hướng dẫn giải:
Sử dụng các tính chất của tích phân và nguyên hàm.
Giải thích thêm:
Một số em có thể sẽ nhầm sang đáp án B vì không phân tích kĩ tính chất của tích phân.
Trong các khẳng định sau, khẳng định nào sai ?
Ta có \(\int{\dfrac{1}{x}\,\text{d}x}=\ln \left| x \right|+C\ne \ln x+C.\)
Chọn mệnh đề đúng:
Giới hạn cần nhớ: \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1\)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm \(M\) là:
\(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j = 2\overrightarrow i + \overrightarrow j + 0\overrightarrow k \) suy ra \(M \left( {2;1;0} \right)\)
Hướng dẫn giải:
\(\overrightarrow {OM} = a\overrightarrow i + b\overrightarrow j + c\overrightarrow k \), với\(\overrightarrow i = \left( {1;0;0} \right);\overrightarrow j = \left( {0;1;0} \right),\overrightarrow k = \left( {0;0;1} \right)\) là các vector đơn vị thì $M(a;b;c)$
Họ nguyên hàm của hàm số $f\left( x \right) = x\cos 2x$ là :
Đặt $\left\{ {\begin{array}{*{20}{l}}{u = x}\\{dv = \cos 2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{du = dx}\\{v = \dfrac{{\sin 2x}}{2}}\end{array}} \right. \Rightarrow \int {f\left( x \right)dx} = \dfrac{{x\sin 2x}}{2} - \dfrac{1}{2}\int {\sin 2xdx} + C = \dfrac{{x\sin 2x}}{2} + \dfrac{{\cos 2x}}{4} + C$
Hướng dẫn giải:
Sử dụng phương pháp tích phân từng phần, ưu tiên đặt u = x.
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?
Đặt \(u = 8 + \cos x \Rightarrow du = - \sin xdx \Rightarrow \sin xdx = - du\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 9\\x = \dfrac{\pi }{2} \Rightarrow t = 8\end{array} \right.\) \( \Rightarrow I = - \int\limits_9^8 {\sqrt u du} = \int\limits_8^9 {\sqrt u du} \)
Hướng dẫn giải:
- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).
- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).
Giải thích thêm:
Một số em tính sai vi phân \(u = 8 + \cos x \Rightarrow du = \sin xdx\) và chọn nhầm đáp án C là sai.
Chọn mệnh đề đúng:
Điểm \(M\) thuộc mặt cầu tâm \(O\) bán kính \(R\) thì \(OM = R\).
Điểm \(M\) thuộc khối cầu tâm \(O\) bán kính \(R\) thì \(OM \le R\).
Do đó điểm thuộc mặt cầu sẽ thuộc khối cầu.
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án C vì nhầm lẫn mọi điểm nằm ngoài mặt cầu sẽ thuộc khối cầu là sai.
Cho hàm số $y = f\left( x \right)$ đồng biến trên $D$ và ${x_1},{x_2} \in D$ mà ${x_1} > {x_2}$, khi đó:
Hàm số $y$ = $f\left( x \right)$ đồng biến trên $D$ nên:
Với mọi ${x_1},{x_2}$ $\in$ $D$ mà ${x_1} > {x_2}$ thì $f\left( {{x_1}} \right)$ > $f\left( {{x_2}} \right)$.
Hướng dẫn giải:
Sử dụng định nghĩa hàm số đồng biến, hàm số nghịch biến
Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$ và mặt bên hợp với đáy một góc \({60^0}\). Thể tích khối chóp $S.ABC$ là:

Bước 1:
Gọi $G$ là trọng tâm tam giác $ABC$. Vì chóp $S.ABC$ đều nên \(SG \bot \left( {ABC} \right)\)
Gọi $D$ là trung điểm của $BC$ ta có: \(AD \bot BC\)
Ta có: \(\left. \begin{array}{l}BC \bot AD\\BC \bot SG\,\,\left( {SG \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot SD\)
\(\left. \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SD \bot BC\\\left( {ABC} \right) \supset AD \bot BC\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SD;AD} \right)} = \widehat {SDA} = {60^0}\)
Bước 2:
Vì tam giác $ABC$ đều cạnh $a$ nên \(AD = \dfrac{{a\sqrt 3 }}{2} \Rightarrow DG = \dfrac{1}{3}AD = \dfrac{{a\sqrt 3 }}{6}\)
\(SG \bot \left( {ABC} \right) \Rightarrow SG \bot AD \Rightarrow \Delta SGD\) vuông tại $G$
\( \Rightarrow SG = GD.\tan 60 = \dfrac{{a\sqrt 3 }}{6}.\sqrt 3 = \dfrac{a}{2}\)
Bước 3:
Tam giác $ABC$ đều \( \Rightarrow {S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Bước 4:
\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SG.{S_{\Delta ABC}} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\).
Hướng dẫn giải:
Bước 1: Xác định góc giữa mặt bên và mặt đáy: là góc giữa hai đường thẳng nằm trong hai mặt phẳng đó và cùng vuông góc với giao tuyến.
Bước 2: Tính chiều cao \(SG\)
Bước 3: Tính diện tích đáy \({S_{ABC}}\).
Bước 4: Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).
Trong các tích phân sau, tích phân nào có giá trị khác \(2\)?
+) \(\int\limits_0^1 {2dx} = \left. {2x} \right|_0^1 = 2\),
+) \(\int\limits_0^2 {xdx} = \left. {\dfrac{{{x^2}}}{2}} \right|_0^2 = 2\)
+) \(\int\limits_0^\pi {\sin xdx} = \left. { - \cos x} \right|_0^\pi = 2\)
Do đó ta dự đoán chỉ có đáp án A là kết quả khác \(2\).
Hướng dẫn giải:
Tính tích phân từng đáp án và dùng phương pháp loại trừ, sử dụng công thức nguyên hàm số cơ bản:
\(\int {dx = x + C} \), \(\int {\sin xdx = - \cos x + C} \), \(\int {{x^\alpha }dx = \dfrac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C} \) và công thức tích phân \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\)
Cho hàm số $y = \dfrac{{2{x^2} - 3{x} + m}}{{x - m}}$ . Để đồ thị hàm số không có tiệm cận đứng thì các giá trị của tham số $m$ là:
Cách 1: Thử đáp án
Với $m = 0$ ta có $x = 0$ là nghiệm của đa thức $2{x^2} - 3{\text{x}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 3\left( {x \ne 0} \right)$ không có tiệm cận đứng.
Với $m = 1$ ta có $x = 1$ là nghiệm của đa thức $2{x^2} - 3{\text{x + 1}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 1\left( {x \ne 1} \right)$ không có tiệm cận đứng.
Cách 2: Chia đa thức

Để hàm số không có tiệm cận đứng thì tử số phải chia hết cho mẫu số
$ \Leftrightarrow 2{m^2} - 2m = 0 \Leftrightarrow m = 0$ hoặc $m = 1$
Hướng dẫn giải:
Đồ thị hàm số $y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ không có tiệm cận đứng nếu mọi nghiệm của $g\left( x \right)$ (nếu có) đều là nghiệm của $f\left( x \right)$.
Giải thích thêm:
Cần nắm chắc kiến thức về tiệm cận đứng, tránh nhầm lẫn coi hàm số đã cho là hàm phân thức thì $x = m$ luôn là tiệm cận đứng dẫn đến chọn sai đáp án D
Cho hàm số $y = f\left( x \right)$ xác định liên tục trên R có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta thấy:
- Hàm số không có GTLN nên A sai.
- $\left( { - 1;2} \right)$ là điểm cực tiểu của đồ thị hàm số nên D sai, $x = - 1$ là điểm cực đại của hàm số nhưng không phải là điểm cực đại của đồ thị hàm số nên B sai.
- Giá trị cực tiểu của hàm số là $y = - 2$ nên C đúng.
Hướng dẫn giải:
Quan sát bảng biến thiên và tìm các điểm cực đại, cực tiểu của hàm số, đồ thị hàm số.
Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:
Từ công thức $A = \dfrac{{T.r{{\left( {1 + r} \right)}^N}}}{{{{\left( {1 + r} \right)}^N} - 1}}$, ta suy ra $T = \dfrac{{A\left[ {{{\left( {1 + r} \right)}^N} - 1} \right]}}{{r{{\left( {1 + r} \right)}^N}}} = \dfrac{{3.000.000.\left[ {{{\left( {1 + 1,12\% } \right)}^{12}} - 1} \right]}}{{1,12\% .{{\left( {1 + 1,12\% } \right)}^{12}}}} = 33510627$ đồng.
Hướng dẫn giải:
Sử dụng công thức cho bài toán trả góp $A = \dfrac{{T.r{{\left( {1 + r} \right)}^N}}}{{{{\left( {1 + r} \right)}^N} - 1}}$.
Cho \(I = \int\limits_{}^{} {\dfrac{{{e^{2x}}dx}}{{\sqrt {{e^x} - 1} }}} = a{t^3} + bt + C\) với $t = \sqrt {{e^x} - 1} $. Giá trị biểu thức \(A = {a^2} + {b^2}\) bằng:
Đặt $t = \sqrt {{e^x} - 1} \Rightarrow {t^2} = {e^x} - 1 \Rightarrow \left\{ \begin{array}{l}2tdt = {e^x}dx\\{e^x} = {t^2} + 1\end{array} \right.$
$ \Rightarrow I = \int\limits_{}^{} {\dfrac{{{e^x}.{e^x}dx}}{{\sqrt {{e^x} - 1} }}} = \int\limits_{}^{} {\dfrac{{\left( {{t^2} + 1} \right).2tdt}}{t}} $ $ = 2\int\limits_{}^{} {\left( {{t^2} + 1} \right)dt} = 2\left( {\dfrac{{{t^3}}}{3} + t} \right) + C$ $ \Rightarrow a = \dfrac{2}{3};b = 2 \Rightarrow {a^2} + {b^2} = \dfrac{{40}}{9}$
Hướng dẫn giải:
- Đặt $t = \sqrt {{e^x} - 1} $
- Tính \(dx\) theo \(dt\) và thay vào tìm nguyên hàm.
Nguyên hàm của hàm số \(f(x) ={\cos 2x\ln \left( {\sin x + \cos x} \right)dx} \) là:
Ta có:
\(\begin{array}{l}\cos 2x\ln \left( {\sin x + \cos x} \right) = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)\ln \left( {\sin x + \cos x} \right)\\ \Rightarrow I = \int {\left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)\ln \left( {\sin x + \cos x} \right)dx} \end{array}\)
Đặt \(t = \sin x + \cos x \Rightarrow dt = \left( {\cos x - \sin x} \right)dx\) , khi đó ta có:\(I = \int {t\ln tdt} \)
Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = tdt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{t}dt\\v = \dfrac{{{t^2}}}{2}\end{array} \right.$
$\begin{array}{l} \Rightarrow I = \dfrac{1}{2}{t^2}\ln t - \dfrac{1}{2}\int {tdt} + C = \dfrac{1}{2}{t^2}\ln t - \dfrac{{{t^2}}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}{\left( {\sin x + \cos x} \right)^2}\ln \left( {\sin x + \cos x} \right) - \dfrac{{{{\left( {\sin x + \cos x} \right)}^2}}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\left( {{{\sin }^2}x + {{\cos }^2}x + \sin 2x} \right)\ln \left( {\sin x + \cos x} \right) - \dfrac{{1 + \sin 2x}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln {\left( {\sin x + \cos x} \right)^2} - \dfrac{{\sin 2x}}{4} - \dfrac{1}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \dfrac{{\sin 2x}}{4} + C.\end{array}$
Hướng dẫn giải:
Dùng công thức nhân đôi \(\cos 2x = {\cos ^2}x - {\sin ^2}x = \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\).
Bằng cách đặt ẩn phụ \(t = \sin x + \cos x\) ta đưa nguyên hàm ban đầu về dạng đơn giản hơn, sau đó áp dụng phương pháp tính nguyên hàm từng phần.
Lưu ý khi trong nguyên hàm có hàm $\ln x$ và hàm đa thức ta ưu tiên đặt $u =\ln x $.
Tính tích phân \(I = \int\limits_0^\pi {{{\cos }^3}x\sin xdx} \)
Đặt \(\cos x = t \Rightarrow - \sin xdx = dt \Rightarrow \sin xdx = - dt\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 1\\x = \pi \Rightarrow t = - 1\end{array} \right.\)
\( \Rightarrow I = - \int\limits_1^{ - 1} {{t^3}dt} = \int\limits_{ - 1}^1 {{t^3}dt} = \left. {\dfrac{{{t^4}}}{4}} \right|_{ - 1}^1 = \dfrac{1}{4} - \dfrac{1}{4} = 0\)
Hướng dẫn giải:
- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).
- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).
Giải thích thêm:
Một số em thường quên không đổi cận dẫn đến chọn nhầm đáp án A là sai.
Cho hàm số $y = f\left( x \right)$ thỏa mãn điều kiện $\int\limits_0^1 {\dfrac{{f'\left( x \right)}}{{x + 1}}{\rm{d}}x} = 1$ và $f\left( 1 \right) - 2f\left( 0 \right) = 2.$
Tính tích phân $I = \int\limits_0^1 {\dfrac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}{\rm{d}}x} .$
Đặt $\left\{ \begin{array}{l}u = \dfrac{1}{{x + 1}}\\{\rm{d}}v = f'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = - \dfrac{{{\rm{d}}x}}{{{{\left( {x + 1} \right)}^2}}}\\v = f\left( x \right)\end{array} \right.,$ khi đó $\int\limits_0^1 {\dfrac{{f'\left( x \right)}}{{x + 1}}{\rm{d}}x} = \left. {\dfrac{{f\left( x \right)}}{{x + 1}}} \right|_0^1 + \int\limits_0^1 {\dfrac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}{\rm{d}}x} $
Suy ra $1 = \left. {\dfrac{{f\left( x \right)}}{{x + 1}}} \right|_0^1 + I \Leftrightarrow I = 1 - \left[ {\dfrac{{f\left( 1 \right)}}{2} - f\left( 0 \right)} \right] = 1 - \dfrac{1}{2}\left[ {f\left( 1 \right) - 2f\left( 0 \right)} \right] = 1 - \dfrac{1}{2}.2 = 0.$
Hướng dẫn giải:
- Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).
- Trong các tích phân đã xuất hiện dạng vi phân \(f'\left( x \right)dx\) thì ta đặt \(dv = f'\left( x \right)dx\).
Số nghiệm thực phân biệt của phương trình \({2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\) là:
Điều kiện : $x \ne 0$
Với $x < 0$ ta có $\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} < 0\\\dfrac{x}{4} + \dfrac{1}{x} < 0\end{array} \right.$ $ \Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} < 1\\{2^{\frac{x}{4} + \frac{1}{x}}} < 1\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} < 2$
⇒ Phương trình không có nghiệm $x < 0$
Với $x > 0$, áp dụng bất đẳng thức Côsi cho hai số dương ta được.
$\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} \ge 2\sqrt {x.\dfrac{1}{{4x}}} = 1\\\dfrac{x}{4} + \dfrac{1}{x} \ge 2\sqrt {\dfrac{x}{4}.\dfrac{1}{x}} = 1\end{array} \right. $ $\Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} \ge 2\\{2^{\frac{x}{4} + \frac{1}{x}}} \ge 2\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} \ge 4$
Dấu “=” xảy ra khi và chỉ khi $\left\{ \begin{array}{l}x = \dfrac{1}{{4x}}\\\dfrac{x}{4} = \dfrac{1}{x}\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}
4{x^2} = 1\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} = \frac{1}{4}\\
{x^2} = 4
\end{array} \right.$(không xảy ra)
Vậy ${2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} > 4$ nên phương trình vô nghiệm
Hướng dẫn giải:
Sử dụng bất đẳng thức để đánh giá vế trái, suy ra phương trình vô nghiệm
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

\(S=\int\limits_{a}^{b}{\left| f\left( x \right) \right|dx}=\int\limits_{a}^{c}{\left| f\left( x \right) \right|dx}+\int\limits_{c}^{b}{\left| f\left( x \right) \right|dx}=-\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}\)
Hướng dẫn giải:
Ứng dụng tích phân để tính diện tích hình phẳng.
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:

Gọi \(O = AC \cap BD\). Vì chóp $S.ABCD$ đều nên \(SO \bot \left( {ABCD} \right)\)
Gọi $E$ và $F$ lần lượt là trung điểm của $CD$ và $AB$
Ta có:
\(\begin{array}{l}AB//CD \Rightarrow SA \subset \left( {SAB} \right)//CD\\ \Rightarrow d\left( {CD;SA} \right) = d\left( {CD;\left( {SAB} \right)} \right) = d\left( {E;\left( {SAB} \right)} \right) = 2d\left( {O;\left( {SAB} \right)} \right) = a\sqrt 3 \\ \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = \dfrac{{a\sqrt 3 }}{2}\end{array}\)
Ta có:
\(\left. \begin{array}{l}OF \bot AB\\SO \bot AB\,\,\left( {SO \bot \left( {ABCD} \right)} \right)\end{array} \right\} \Rightarrow AB \bot \left( {SOF} \right)\)
Trong $\left( {SOF} \right)$ kẻ \(OH \bot SF\,\,\left( 1 \right)\)
Vì \(AB \bot \left( {SOF} \right) \Rightarrow AB \bot OH\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(OH \bot \left( {SAB} \right) \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OH = \dfrac{{a\sqrt 3 }}{2}\)
Xét tam giác vuông SOF có: \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{F^2}}}\)
\( \Rightarrow \dfrac{1}{{S{O^2}}} = \dfrac{1}{{O{H^2}}} - \dfrac{1}{{O{F^2}}} = \dfrac{4}{{3{a^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{3{a^2}}} \Rightarrow SO = a\sqrt 3 \)
Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}a\sqrt 3 .4{a^2} = \dfrac{{4{a^3}\sqrt 3 }}{3}\)
Hướng dẫn giải:
- Xác định khoảng cách giữa hai đường thẳng \(CD\) và \(SA\) chéo nhau bằng cách tìm một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia và tính khoảng cách giữa đường thẳng và mặt phẳng song song (chính là khoảng cách từ một điểm thuộc đường thẳng đến mặt phẳng).
- Tính diện tích đáy \({S_{ABCD}}\) và chiều cao \(SO\), từ đó tính được thể tích khối chóp.
Cho tứ diện \(ABCD\) có các cạnh \(AB,AC,AD\) đôi một vuông góc với nhau, \(AB = 6a,AC = 7a,AD = 4a\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(BC,CD,DB\). Thể tích \(V\) của tứ diện \(AMNP\) là:

Ta có:
\(ABCD\) là tứ diện vuông tại \(A\) nên \({V_{ABCD}} = \dfrac{1}{6}AB.AC.AD = \dfrac{1}{6}.6a.7a.4a = 28{a^3}\).
Áp dụng công thức tính tỉ lệ thể tích các khối tứ diện ta có:
\(\dfrac{{{V_{DAPN}}}}{{{V_{DABC}}}} = \dfrac{{DA}}{{DA}}.\dfrac{{DP}}{{DB}}.\dfrac{{DN}}{{DC}} = \dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} \Rightarrow {V_{DAPN}} = \dfrac{1}{4}{V_{DABC}} = \dfrac{1}{4}.28{a^3} = 7{a^3}\)
\(\dfrac{{{V_{BAPM}}}}{{{V_{BADC}}}} = \dfrac{{BA}}{{BA}}.\dfrac{{BP}}{{BD}}.\dfrac{{BM}}{{BC}} = \dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} \Rightarrow {V_{BAPM}} = \dfrac{1}{4}{V_{BADC}} = \dfrac{1}{4}.28{a^3} = 7{a^3}\)
\(\dfrac{{{V_{CAMN}}}}{{{V_{CABD}}}} = \dfrac{{CA}}{{CA}}.\dfrac{{CM}}{{CB}}.\dfrac{{CN}}{{CD}} = \dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} \Rightarrow {V_{CAMN}} = \dfrac{1}{4}{V_{CABD}} = \dfrac{1}{4}.28{a^3} = 7{a^3}\)
Do đó \({V_{AMNP}} = {V_{ABCD}} - {V_{DAPN}} - {V_{BAPM}} - {V_{CAMN}} = 28{a^3} - 7{a^3} - 7{a^3} - 7{a^3} = 7{a^3}\)
Hướng dẫn giải:
Tính thể tích các khối chóp ${{V_{DAPN}}}$, ${{V_{BAPM}}}$, ${V_{CAMN}}$ và $ V_{ABCD}$ rồi tính ${V_{AMNP}} = {V_{ABCD}} - {V_{DAPN}} $ $- {V_{BAPM}} - {V_{CAMN}}$
Giải thích thêm:
- Một số em sẽ tính nhầm tỉ lệ thể tích khối tứ diện \(AMNP\) và \(ABCD\) là \(\dfrac{1}{3}\) nên chọn nhầm đáp án C là sai.
- Cách giải ở trên hướng dẫn các em tính thể tích tứ diện bằng phương pháp cộng trừ thể tích (phân chia khối đa diện) và cách áp dụng công thức tỉ lệ thể tích.
Ngoài ra, bài toán còn một cách giải khác, các em có thể tham khảo các bước giải như sau:
+ Tính thể tích của tứ diện \(ABCD\)
+ So sánh diện tích các tam giác \(MNP\) và \(BCD\), cụ thể \({S_{MNP}} = \dfrac{1}{4}{S_{BCD}}\)
+ So sánh thể tích \({V_{A.MNP}}\) và \({V_{A.BCD}}\), cụ thể:
Hai tứ diện có chung chiều cao kẻ từ \(A\) và diện tích đáy \({S_{MNP}} = \dfrac{1}{4}{S_{BCD}}\)
Do đó \({V_{A.MNP}} = \dfrac{1}{4}{V_{A.BCD}}\)
Cho hình nón có các kích thước \(r = 1;h = 2\) với \(r,h\) lần lượt là bán kính đáy và độ dài đường cao hình nón. Diện tích toàn phần hình nón là:
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow l = \sqrt {{r^2} + {h^2}} = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)
Do đó \({S_{tp}} = \pi rl + \pi {r^2} = \pi .1.\sqrt 5 + \pi {.1^2} = \left( {1 + \sqrt 5 } \right)\pi \)
Hướng dẫn giải:
- Tính độ dài đường sinh hình nón sử dụng công thức \({l^2} = {r^2} + {h^2}\).
- Tính diện tích toàn phần sử dụng công thức \({S_{tp}} = \pi rl + \pi {r^2}\).
Giải thích thêm:
Một số em áp dụng nhầm công thức \({l^2} = {h^2} - {r^2}\) nên ra đáp án C là sai. Một số em lại áp dụng sai công thức \({S_{tp}} = \pi rh + \pi {r^2}\) dẫn đến chọn nhầm đáp án A là sai.
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2,{\rm{ }}\left| {\overrightarrow b } \right| = 5\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) bằng:
Áp dụng công thức \(\left| {\left[ {\overrightarrow a ,\overrightarrow b } \right]} \right| = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\sin \left( {\overrightarrow a ,\overrightarrow b } \right)\), ta được \(\left| {\left[ {\overrightarrow a ,\overrightarrow b } \right]} \right| = 2.5.\sin {30^0} = 5.\)
Hướng dẫn giải:
Áp dụng công thức \(\left| {\left[ {\overrightarrow a ,\overrightarrow b } \right]} \right| = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\sin \left( {\overrightarrow a ,\overrightarrow b } \right)\)
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Ta có: \(\overrightarrow {MM'} = \left( {4; - 2;6} \right) \Rightarrow \overrightarrow n = \dfrac{1}{2}\overrightarrow {MM'} = \left( {2; - 1;3} \right)\)
Mặt phẳng \(\left( P \right)\) đi qua \(M'\) và nhận \(\overrightarrow n = \left( {2; - 1;3} \right)\) làm VTPT nên có phương trình:
\(2\left( {x - 5} \right) - 1\left( {y + 4} \right) + 3\left( {z - 2} \right) = 0 \Leftrightarrow 2x - y + 3z - 20 = 0\)
Hướng dẫn giải:
- Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {a;b;c} \right)\) làm VTPT là:
\(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\)
Giải thích thêm:
Một số em có thể chọn nhầm đáp án B vì khi viết phương trình mặt phẳng đã thay nhầm tọa độ của \(M\) dẫn đến phương trình \(2x - y + 3z + 12 = 0\) là sai.
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {3;4;1} \right)\) và giao tuyến của hai mặt phẳng \(\left( Q \right):19x - 6y - 4z + 27 = 0\) và \(\left( R \right):42x - 8y + 3z + 11 = 0\) là:
Mặt phẳng \(\left( P \right)\) đi qua giao tuyến của \(\left( Q \right),\left( R \right)\) nên có phương trình dạng \(m\left( {19x - 6y - 4z + 27} \right) + n\left( {42x - 8y + 3z + 11} \right) = 0\) với \({m^2} + {n^2} > 0.\)
Do \(\left( P \right)\) đi qua \(M\left( {3;4;1} \right)\) nên \(56m + 108n = 0 \Rightarrow \dfrac{m}{n} = - \dfrac{{27}}{{14}}.\)
Chọn \(m = 27,n = - 14\) thì:
\(\begin{array}{l}\left( P \right):27.\left( {19x - 6y - 4z + 27} \right) - 14.\left( {42x - 8y + 3z + 11} \right) = 0\\ \Leftrightarrow - 75x - 50y - 150z + 575 = 0\\ \Leftrightarrow 3x + 2y + 6z - 23 = 0\end{array}\)
Hướng dẫn giải:
Sử dụng lý thuyết chùm mặt phẳng:
Giả sử \(\left( P \right) \cap \left( Q \right) = d\) trong đó: $\left( P \right):{{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z+{{D}_{1}}=0~;\left( Q \right):{{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z+{{D}_{2}}=0$
Khi đó, mọi mặt phẳng chứa \(d\) đều có phương trình dạng: $m\left( {{A_1}x + {B_1}y + {C_1}z + {D_1}} \right) + n\left( {{A_2}x + {B_2}y + {C_2}z + {D_2}} \right) = 0$ với \({m^2} + {n^2} > 0\)
Giải thích thêm:

Lấy điểm \(A\left( {0;\dfrac{5}{2};3} \right) \in \left( Q \right) \cap \left( R \right)\).
Giao tuyến \(d\) có \(\overrightarrow u \bot \overrightarrow {{n_Q}} ,\overrightarrow u \bot \overrightarrow {{n_R}} \) nên \(\overrightarrow u \) cùng phương \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right]\)
Mà \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right] = \left( { - 50; - 225;100} \right)\) nên chọn \(\overrightarrow u = \dfrac{1}{{25}}\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right] = \left( { - 2; - 9;4} \right)\)
Do đó \(d\) đi qua \(A\) và có VTCP \(\overrightarrow u = \left( { - 2; - 9;4} \right)\).
Lại đó \(\left( P \right)\) đi qua \(M\left( {3;4;1} \right)\) và chứa \(d\) nên \(\left( P \right)\) đi qua các điểm \(M,A\) và có VTPT \(\overrightarrow n \bot \overrightarrow u \).
Do đó \(\left\{ \begin{array}{l}\overrightarrow n \bot \overrightarrow u \\\overrightarrow n \bot \overrightarrow {MA} \end{array} \right.\) nên \(\overrightarrow n \) cùng phương với \(\left[ {\overrightarrow u ,\overrightarrow {MA} } \right] = \left( { - 12; - 8; - 24} \right)\) hay chọn \(\overrightarrow n = \left( {3;2;6} \right)\) là VTPT.
Vậy \(\left( P \right)\) đi qua \(M\left( {3;4;1} \right)\) và nhận \(\overrightarrow n = \left( {3;2;6} \right)\) làm VTPT nên: \(\left( P \right):3\left( {x - 3} \right) + 2\left( {y - 4} \right) + 6\left( {z - 1} \right) = 0\) \( \Leftrightarrow 3x + 2y + 6z - 23 = 0\).
Chọn A.
Trong không gian với hệ tọa độ $Oxyz$, cho ba vectơ $\vec a = \left( {1;m;2} \right),\vec b = \left( {m + 1;2;1} \right)$ và \(\vec c = \left( {0;m - 2;2} \right)\). Giá trị \(m\) bằng bao nhiêu để ba vectơ \(\vec a,\vec b,\vec c\) đồng phẳng
Ta có
\(\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}m&2\\2&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\1&{m + 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&m\\{m + 1}&2\end{array}} \right|} \right) = \left( {m - 4;2m + 1;2 - {m^2} - m} \right)\)
\(\left[ {\vec a,\vec b} \right].\vec c = (2m + 1)(m - 2) + 2(2 - {m^2} - m)\)
\(\vec a,\vec b,\vec c\) đồng phẳng khi
\(\begin{array}{l}\left[ {\vec a,\vec b} \right].\vec c = 0 \Leftrightarrow (2m + 1)(m - 2) + 2(2 - {m^2} - m) = 0\\ \Leftrightarrow 2{m^2} - 4m + m - 2 + 4 - 2{m^2} - 2m = 0\\ \Leftrightarrow - 5m + 2 = 0\\ \Leftrightarrow m = \dfrac{2}{5}\end{array}\)
Hướng dẫn giải:
Điều kiện để ba véc tơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) đồng phẳng là \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{u_3}} = 0\)
Cho tam giác $ABC$ biết $A\left( {2;4; - 3} \right)$ và trọng tâm $G$ của tam giác có toạ độ là $G\left( {2;1;0} \right)$. Khi đó \(\overrightarrow {AB} + \overrightarrow {AC} \) có tọa độ là
Gọi $M$ là trung điểm của $BC$. Ta có \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \).
Do tính chất trọng tâm có \(\overrightarrow {AM} = \dfrac{3}{2}\overrightarrow {AG} \). Suy ra\(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).
Mà \(\overrightarrow {AG} = \left( {2 - 2;1 - 4;0 - ( - 3)} \right) = \left( {0; - 3;3} \right)\). Suy ra \(3\overrightarrow {AG} = (0; - 9;9)\).
Hướng dẫn giải:
- Gọi \(M\) là trung điểm của \(BC\), tìm \(\overrightarrow {AM} \) qua \(\overrightarrow {AG} \).
- Biểu diễn tổng hai véc tơ \(\overrightarrow {AB} + \overrightarrow {AC} \) qua \(\overrightarrow {AM} \) suy ra kết luận.
Giải thích thêm:
HS có thể sử dụng công thức trọng tâm tam giác để tính.
Cách 2: Sử dụng tính chất: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {GB} + \overrightarrow {GC} = - \overrightarrow {GA} = \overrightarrow {AG} \) như sau:
\(\overrightarrow {AB} + \overrightarrow {AC} \) \( = \overrightarrow {AG} + \overrightarrow {GB} + \overrightarrow {AG} + \overrightarrow {GC} \) \( = 2\overrightarrow {AG} + \left( {\overrightarrow {GB} + \overrightarrow {GC} } \right)\) \( = 2\overrightarrow {AG} + \left( { - \overrightarrow {GA} } \right)\) \( = 2\overrightarrow {AG} + \overrightarrow {AG} = 3\overrightarrow {AG} \)
Cách 3: Gọi \(B\left( {{x_B};{y_B};{z_B}} \right),C\left( {{x_C};{y_C};{z_C}} \right)\) thì \(\left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} = 3{x_G}\\{y_A} + {y_B} + {y_C} = 3{y_G}\\{z_A} + {z_B} + {z_C} = 3{z_G}\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 3{x_G} - {x_A}\\{y_B} + {y_C} = 3{y_G} - {y_A}\\{z_B} + {z_C} = 3{z_G} - {z_A}\end{array} \right.\)
Từ đó \(\overrightarrow {AB} + \overrightarrow {AC} \) \( = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right) + \left( {{x_C} - {x_A};{y_C} - {y_A};{z_C} - {z_A}} \right)\) \( = \left( {{x_B} + {x_C} - 2{x_A};{y_B} + {y_C} - 2{y_A};{z_B} + {z_C} - 2{z_A}} \right)\).
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Xét đồ thị hàm số $y = \dfrac{{5 - 2x}}{{x + 4}}$ có TCĐ là $x = - 4$.
Suy ra hai đồ thị hàm số đã cho có tiệm cận đứng trùng nhau $ \Leftrightarrow x = - 4$ là TCĐ của đồ thị hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$.
Ta thấy $x = - 4$ không là nghiệm của tử số $ \Rightarrow x = - 4$ là TCĐ của đồ thị hàm số$ \Leftrightarrow {m^2} - 8 = - 4 \Leftrightarrow {m^2} - 8 + 4 = 0$$ \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2$.
Hướng dẫn giải:
- Tìm tiệm cận đứng của hai đồ thị hàm số đã cho.
- Điều kiện để hai tiệm cận đứng trùng nhau là chúng có cùng phương trình.
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Ta có \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\Leftrightarrow {{\left( y-3 \right)}^{2}}=4-{{x}^{2}}\Leftrightarrow \left[\begin{align} & y=f\left( x \right)=\sqrt{4-{{x}^{2}}}+3 \\ & y=g\left( x \right)=-\,\sqrt{4-{{x}^{2}}}+3 \\\end{align} \right.\)

Vậy thể tích khối tròn xoay cần tính là \(V=\pi \int\limits_{-\,2}^{2}{{{f}^{2}}\left( x \right)\,\text{d}x}-\pi \int\limits_{-\,2}^{2}{{{g}^{2}}\left( x \right)\,\text{d}x}\)
\(\begin{align} & =\pi \int\limits_{-\,2}^{2}{\left( {{f}^{2}}\left( x \right)-{{g}^{2}}\left( x \right) \right)\,\text{d}x} \\ & =\pi \int\limits_{-\,2}^{2}{\left( {{\left( \sqrt{4-{{x}^{2}}}+3 \right)}^{2}}-{{\left( 3-\sqrt{4-{{x}^{2}}} \right)}^{2}} \right)\,\text{d}x} \\ & =\pi \,\int\limits_{-\,2}^{2}{12\sqrt{4-{{x}^{2}}}\,\text{d}x}=24{{\pi }^{2}}. \\\end{align}\)
Vậy thể tích cần tính là \(V=24{{\pi }^{2}}.\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích khối tròn xoay được quay quanh trục hoành của các đồ thị hàm số : \(y=f\left( x \right);\ x=a;\ x=b\ \ \left( a<b \right)\) là : \(V=\pi \int\limits_{a}^{b}{{{f}^{2}}\left( x \right)}dx.\)
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Ta có: .$d\left( {O;\left( P \right)} \right) \le OM$
Dấu bằng xảy ra $ \Leftrightarrow OM \bot \left( P \right) \Rightarrow \left( P \right)$ nhận $\overrightarrow {OM} = \left( {1;2;3} \right)$ là 1 VTPT. Do đó phương trình mặt phẳng (P) là: $1\left( {x - 1} \right) + 2\left( {y - 2} \right) + 3\left( {z - 3} \right) = 0\left( P \right):x + 2y + 3z - 14 = 0$
$ \Rightarrow A\left( {14;0;0} \right);B\left( {0;7;0} \right);C\left( {0;0;\dfrac{{14}}{3}} \right) \Rightarrow {V_{O.ABC}} = \dfrac{1}{6}OA.OB.OC = \dfrac{{686}}{9}.$
Hướng dẫn giải:
$d\left( {O;\left( P \right)} \right) \le OM$, để mặt phẳng (P) đi qua điểm M và cách O một khoảng lớn nhất thì (P) đi qua M và $\left( P \right) \bot OM$
Viết phương trình mặt phẳng (P), tìm tọa độ các điểm A, B, C và sử dụng công thức ${V_{OABC}} = \dfrac{1}{6}OA.OB.OC$
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y=x{{e}^{x}},\ \ y=0,\ x=0,\ x=1\) xung quanh trục \(Ox\) là:
Áp dụng công thức ta có thể tích khối tròn xoay bài cho là: \(V=\pi \int\limits_{0}^{1}{{{\left( x{{e}^{x}} \right)}^{2}}dx=}\pi \int\limits_{0}^{1}{{{x}^{2}}{{e}^{2x}}dx.}\)
Hướng dẫn giải:
Thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đường \(y=f\left( x \right),\ \ y=g\left( x \right),\ x=a,\ x=b\) quanh trục \(Ox\) được tính bởi công thức:
\(V=\pi \int\limits_{a}^{b}{\left| {{f}^{2}}\left( x \right)-{{g}^{2}}\left( x \right) \right|dx.}\)
Đề thi liên quan
-
Đề kiểm tra giữa học kì 2 - Đề số 2
-
50 câu hỏi
-
90 phút
-
-
Đề kiểm tra giữa học kì 2 - Đề số 3
-
50 câu hỏi
-
90 phút
-