Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Ta có nhận xét nhanh:
Đáp án A: Vì \({x^3} \ge 0,\forall x \in \left[ {0;1} \right]\) nên \(\int\limits_0^1 {{x^3}dx} \ge 0\) hay A đúng.
Đáp án B: Vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} = \left. { - \cos x} \right|_0^{\dfrac{\pi }{2}} = 1 < \dfrac{\pi }{2}\) nên B sai.
Đáp án C: Vì \({x^2} \ge 0,\forall x\) nên \(\int\limits_{ - 1}^1 {{x^2}dx} \ge 0\) nên C đúng.
Đáp án D: Vì \(x \ge \sin x\) với mọi \(x \in \left[ {1;2} \right]\) nên \(\int\limits_1^2 {xdx} \ge \int\limits_1^2 {\sin xdx} \Leftrightarrow \int\limits_1^2 {\left( {x - \sin x} \right)dx} \ge 0\) hay D đúng.
Hướng dẫn giải:
Sử dụng các tính chất:
- Nếu \(f\left( x \right) \ge 0\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge 0\)
- Nếu \(f\left( x \right) \ge g\left( x \right)\) trên \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge \int\limits_a^b {g\left( x \right)dx} \).
Ta có nhận xét nhanh:
Đáp án A: Vì \({x^3} \ge 0,\forall x \in \left[ {0;1} \right]\) nên \(\int\limits_0^1 {{x^3}dx} \ge 0\) hay A đúng.
Đáp án B: Vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} = \left. { - \cos x} \right|_0^{\dfrac{\pi }{2}} = 1 < \dfrac{\pi }{2}\) nên B sai.
Đáp án C: Vì \({x^2} \ge 0,\forall x\) nên \(\int\limits_{ - 1}^1 {{x^2}dx} \ge 0\) nên C đúng.
Đáp án D: Vì \(x \ge \sin x\) với mọi \(x \in \left[ {1;2} \right]\) nên \(\int\limits_1^2 {xdx} \ge \int\limits_1^2 {\sin xdx} \Leftrightarrow \int\limits_1^2 {\left( {x - \sin x} \right)dx} \ge 0\) hay D đúng.
Hướng dẫn giải:
Sử dụng các tính chất:
- Nếu \(f\left( x \right) \ge 0\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge 0\)
- Nếu \(f\left( x \right) \ge g\left( x \right)\) trên \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)dx} \ge \int\limits_a^b {g\left( x \right)dx} \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định liên tục trên R có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm \(M\) là:
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:
