Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Điều kiện : $x \ne 0$
Với $x < 0$ ta có $\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} < 0\\\dfrac{x}{4} + \dfrac{1}{x} < 0\end{array} \right.$ $ \Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} < 1\\{2^{\frac{x}{4} + \frac{1}{x}}} < 1\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} < 2$
⇒ Phương trình không có nghiệm $x < 0$
Với $x > 0$, áp dụng bất đẳng thức Côsi cho hai số dương ta được.
$\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} \ge 2\sqrt {x.\dfrac{1}{{4x}}} = 1\\\dfrac{x}{4} + \dfrac{1}{x} \ge 2\sqrt {\dfrac{x}{4}.\dfrac{1}{x}} = 1\end{array} \right. $ $\Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} \ge 2\\{2^{\frac{x}{4} + \frac{1}{x}}} \ge 2\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} \ge 4$
Dấu “=” xảy ra khi và chỉ khi $\left\{ \begin{array}{l}x = \dfrac{1}{{4x}}\\\dfrac{x}{4} = \dfrac{1}{x}\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}
4{x^2} = 1\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} = \frac{1}{4}\\
{x^2} = 4
\end{array} \right.$(không xảy ra)
Vậy ${2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} > 4$ nên phương trình vô nghiệm
Hướng dẫn giải:
Sử dụng bất đẳng thức để đánh giá vế trái, suy ra phương trình vô nghiệm
Điều kiện : $x \ne 0$
Với $x < 0$ ta có $\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} < 0\\\dfrac{x}{4} + \dfrac{1}{x} < 0\end{array} \right.$ $ \Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} < 1\\{2^{\frac{x}{4} + \frac{1}{x}}} < 1\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} < 2$
⇒ Phương trình không có nghiệm $x < 0$
Với $x > 0$, áp dụng bất đẳng thức Côsi cho hai số dương ta được.
$\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} \ge 2\sqrt {x.\dfrac{1}{{4x}}} = 1\\\dfrac{x}{4} + \dfrac{1}{x} \ge 2\sqrt {\dfrac{x}{4}.\dfrac{1}{x}} = 1\end{array} \right. $ $\Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} \ge 2\\{2^{\frac{x}{4} + \frac{1}{x}}} \ge 2\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} \ge 4$
Dấu “=” xảy ra khi và chỉ khi $\left\{ \begin{array}{l}x = \dfrac{1}{{4x}}\\\dfrac{x}{4} = \dfrac{1}{x}\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}
4{x^2} = 1\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} = \frac{1}{4}\\
{x^2} = 4
\end{array} \right.$(không xảy ra)
Vậy ${2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} > 4$ nên phương trình vô nghiệm
Hướng dẫn giải:
Sử dụng bất đẳng thức để đánh giá vế trái, suy ra phương trình vô nghiệm
CÂU HỎI CÙNG CHỦ ĐỀ
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Cho \(I = \int\limits_{}^{} {\dfrac{{{e^{2x}}dx}}{{\sqrt {{e^x} - 1} }}} = a{t^3} + bt + C\) với $t = \sqrt {{e^x} - 1} $. Giá trị biểu thức \(A = {a^2} + {b^2}\) bằng:
Thể tích của vật tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm \(y=\tan x\), trục \(Ox\), đường thẳng \(x=0\), đường thẳng \(x=\frac{\pi }{3}\) quanh trục \(Ox\) là
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2,{\rm{ }}\left| {\overrightarrow b } \right| = 5\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) bằng:
Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
