Nguyên hàm của hàm số \(f(x) ={\cos 2x\ln \left( {\sin x + \cos x} \right)dx} \) là:
A.
\(I = \dfrac{1}{2}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \dfrac{1}{4}\sin 2x + C\)
B.
\(I = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \dfrac{1}{2}\sin 2x + C\)
C.
\(I = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \dfrac{1}{4}\sin 2x + C\)
D.
\(I = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) + \dfrac{1}{4}\sin 2x + C\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Ta có:
\(\begin{array}{l}\cos 2x\ln \left( {\sin x + \cos x} \right) = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)\ln \left( {\sin x + \cos x} \right)\\ \Rightarrow I = \int {\left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)\ln \left( {\sin x + \cos x} \right)dx} \end{array}\)
Đặt \(t = \sin x + \cos x \Rightarrow dt = \left( {\cos x - \sin x} \right)dx\) , khi đó ta có:\(I = \int {t\ln tdt} \)
Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = tdt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{t}dt\\v = \dfrac{{{t^2}}}{2}\end{array} \right.$
$\begin{array}{l} \Rightarrow I = \dfrac{1}{2}{t^2}\ln t - \dfrac{1}{2}\int {tdt} + C = \dfrac{1}{2}{t^2}\ln t - \dfrac{{{t^2}}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}{\left( {\sin x + \cos x} \right)^2}\ln \left( {\sin x + \cos x} \right) - \dfrac{{{{\left( {\sin x + \cos x} \right)}^2}}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\left( {{{\sin }^2}x + {{\cos }^2}x + \sin 2x} \right)\ln \left( {\sin x + \cos x} \right) - \dfrac{{1 + \sin 2x}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln {\left( {\sin x + \cos x} \right)^2} - \dfrac{{\sin 2x}}{4} - \dfrac{1}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \dfrac{{\sin 2x}}{4} + C.\end{array}$
Hướng dẫn giải:
Dùng công thức nhân đôi \(\cos 2x = {\cos ^2}x - {\sin ^2}x = \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\).
Bằng cách đặt ẩn phụ \(t = \sin x + \cos x\) ta đưa nguyên hàm ban đầu về dạng đơn giản hơn, sau đó áp dụng phương pháp tính nguyên hàm từng phần.
Lưu ý khi trong nguyên hàm có hàm $\ln x$ và hàm đa thức ta ưu tiên đặt $u =\ln x $.
Ta có:
\(\begin{array}{l}\cos 2x\ln \left( {\sin x + \cos x} \right) = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)\ln \left( {\sin x + \cos x} \right)\\ \Rightarrow I = \int {\left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)\ln \left( {\sin x + \cos x} \right)dx} \end{array}\)
Đặt \(t = \sin x + \cos x \Rightarrow dt = \left( {\cos x - \sin x} \right)dx\) , khi đó ta có:\(I = \int {t\ln tdt} \)
Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = tdt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{t}dt\\v = \dfrac{{{t^2}}}{2}\end{array} \right.$
$\begin{array}{l} \Rightarrow I = \dfrac{1}{2}{t^2}\ln t - \dfrac{1}{2}\int {tdt} + C = \dfrac{1}{2}{t^2}\ln t - \dfrac{{{t^2}}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}{\left( {\sin x + \cos x} \right)^2}\ln \left( {\sin x + \cos x} \right) - \dfrac{{{{\left( {\sin x + \cos x} \right)}^2}}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\left( {{{\sin }^2}x + {{\cos }^2}x + \sin 2x} \right)\ln \left( {\sin x + \cos x} \right) - \dfrac{{1 + \sin 2x}}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln {\left( {\sin x + \cos x} \right)^2} - \dfrac{{\sin 2x}}{4} - \dfrac{1}{4} + {C_1}\\\,\,\,\,\,\,\,\,\, = \dfrac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \dfrac{{\sin 2x}}{4} + C.\end{array}$
Hướng dẫn giải:
Dùng công thức nhân đôi \(\cos 2x = {\cos ^2}x - {\sin ^2}x = \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\).
Bằng cách đặt ẩn phụ \(t = \sin x + \cos x\) ta đưa nguyên hàm ban đầu về dạng đơn giản hơn, sau đó áp dụng phương pháp tính nguyên hàm từng phần.
Lưu ý khi trong nguyên hàm có hàm $\ln x$ và hàm đa thức ta ưu tiên đặt $u =\ln x $.
CÂU HỎI CÙNG CHỦ ĐỀ
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Cho \(I = \int\limits_{}^{} {\dfrac{{{e^{2x}}dx}}{{\sqrt {{e^x} - 1} }}} = a{t^3} + bt + C\) với $t = \sqrt {{e^x} - 1} $. Giá trị biểu thức \(A = {a^2} + {b^2}\) bằng:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2,{\rm{ }}\left| {\overrightarrow b } \right| = 5\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) bằng:
Thể tích của vật tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm \(y=\tan x\), trục \(Ox\), đường thẳng \(x=0\), đường thẳng \(x=\frac{\pi }{3}\) quanh trục \(Ox\) là
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:
