Cho hình nón có các kích thước \(r = 1;h = 2\) với \(r,h\) lần lượt là bán kính đáy và độ dài đường cao hình nón. Diện tích toàn phần hình nón là:
A.
\(3\pi \)
B.
\(1 + \sqrt 5 \pi \)
C.
\(\left( {\sqrt 3 + 1} \right)\pi \)
D.
\(\left( {\sqrt 5 + 1} \right)\pi \)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow l = \sqrt {{r^2} + {h^2}} = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)
Do đó \({S_{tp}} = \pi rl + \pi {r^2} = \pi .1.\sqrt 5 + \pi {.1^2} = \left( {1 + \sqrt 5 } \right)\pi \)
Hướng dẫn giải:
- Tính độ dài đường sinh hình nón sử dụng công thức \({l^2} = {r^2} + {h^2}\).
- Tính diện tích toàn phần sử dụng công thức \({S_{tp}} = \pi rl + \pi {r^2}\).
Giải thích thêm:
Một số em áp dụng nhầm công thức \({l^2} = {h^2} - {r^2}\) nên ra đáp án C là sai. Một số em lại áp dụng sai công thức \({S_{tp}} = \pi rh + \pi {r^2}\) dẫn đến chọn nhầm đáp án A là sai.
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow l = \sqrt {{r^2} + {h^2}} = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)
Do đó \({S_{tp}} = \pi rl + \pi {r^2} = \pi .1.\sqrt 5 + \pi {.1^2} = \left( {1 + \sqrt 5 } \right)\pi \)
Hướng dẫn giải:
- Tính độ dài đường sinh hình nón sử dụng công thức \({l^2} = {r^2} + {h^2}\).
- Tính diện tích toàn phần sử dụng công thức \({S_{tp}} = \pi rl + \pi {r^2}\).
Giải thích thêm:
Một số em áp dụng nhầm công thức \({l^2} = {h^2} - {r^2}\) nên ra đáp án C là sai. Một số em lại áp dụng sai công thức \({S_{tp}} = \pi rh + \pi {r^2}\) dẫn đến chọn nhầm đáp án A là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định liên tục trên R có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm \(M\) là:
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2,{\rm{ }}\left| {\overrightarrow b } \right| = 5\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) bằng:
