Cho \(I = \int\limits_{}^{} {\dfrac{{{e^{2x}}dx}}{{\sqrt {{e^x} - 1} }}} = a{t^3} + bt + C\) với $t = \sqrt {{e^x} - 1} $. Giá trị biểu thức \(A = {a^2} + {b^2}\) bằng:
A.
$\dfrac{{52}}{9}$
B.
$\dfrac{{40}}{9}$
C.
$\dfrac{{47}}{9}$
D.
$\dfrac{{46}}{9}$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Đặt $t = \sqrt {{e^x} - 1} \Rightarrow {t^2} = {e^x} - 1 \Rightarrow \left\{ \begin{array}{l}2tdt = {e^x}dx\\{e^x} = {t^2} + 1\end{array} \right.$
$ \Rightarrow I = \int\limits_{}^{} {\dfrac{{{e^x}.{e^x}dx}}{{\sqrt {{e^x} - 1} }}} = \int\limits_{}^{} {\dfrac{{\left( {{t^2} + 1} \right).2tdt}}{t}} $ $ = 2\int\limits_{}^{} {\left( {{t^2} + 1} \right)dt} = 2\left( {\dfrac{{{t^3}}}{3} + t} \right) + C$ $ \Rightarrow a = \dfrac{2}{3};b = 2 \Rightarrow {a^2} + {b^2} = \dfrac{{40}}{9}$
Hướng dẫn giải:
- Đặt $t = \sqrt {{e^x} - 1} $
- Tính \(dx\) theo \(dt\) và thay vào tìm nguyên hàm.
Đặt $t = \sqrt {{e^x} - 1} \Rightarrow {t^2} = {e^x} - 1 \Rightarrow \left\{ \begin{array}{l}2tdt = {e^x}dx\\{e^x} = {t^2} + 1\end{array} \right.$
$ \Rightarrow I = \int\limits_{}^{} {\dfrac{{{e^x}.{e^x}dx}}{{\sqrt {{e^x} - 1} }}} = \int\limits_{}^{} {\dfrac{{\left( {{t^2} + 1} \right).2tdt}}{t}} $ $ = 2\int\limits_{}^{} {\left( {{t^2} + 1} \right)dt} = 2\left( {\dfrac{{{t^3}}}{3} + t} \right) + C$ $ \Rightarrow a = \dfrac{2}{3};b = 2 \Rightarrow {a^2} + {b^2} = \dfrac{{40}}{9}$
Hướng dẫn giải:
- Đặt $t = \sqrt {{e^x} - 1} $
- Tính \(dx\) theo \(dt\) và thay vào tìm nguyên hàm.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định liên tục trên R có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm \(M\) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2,{\rm{ }}\left| {\overrightarrow b } \right| = 5\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) bằng:
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
