Cho tứ diện \(ABCD\) và \(G\) là trọng tâm tứ diện. Chọn kết luận đúng:
A.
\({x_A} + {x_B} + {x_C} + {x_D} = 4{x_G}\)
B.
\({x_A} + {x_B} = {x_C} + {x_D} = 2{x_G}\)
C.
\({y_A} - {y_B} - {y_C} - {y_D} = 4{y_G}\)
D.
\(4\left( {{z_A} + {z_B} + {z_C} + {z_D}} \right) = {z_G}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Do \(G\) là trọng tâm tứ diện \(ABCD\) nên \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} + {x_D} = 4{x_G}\\{y_A} + {y_B} + {y_C} + {y_D} = 4{y_G}\\{z_A} + {z_B} + {z_C} + {z_D} = 4{z_G}\end{array} \right.\)
Hướng dẫn giải:
Tọa độ trọng tâm tứ diện \(ABCD\) là \(G\left( {\dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};\dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}} \right)\)
Do \(G\) là trọng tâm tứ diện \(ABCD\) nên \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} + {x_D} = 4{x_G}\\{y_A} + {y_B} + {y_C} + {y_D} = 4{y_G}\\{z_A} + {z_B} + {z_C} + {z_D} = 4{z_G}\end{array} \right.\)
Hướng dẫn giải:
Tọa độ trọng tâm tứ diện \(ABCD\) là \(G\left( {\dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};\dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định liên tục trên R có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm \(M\) là:
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2,{\rm{ }}\left| {\overrightarrow b } \right| = 5\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) bằng:
Thể tích của vật tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm \(y=\tan x\), trục \(Ox\), đường thẳng \(x=0\), đường thẳng \(x=\frac{\pi }{3}\) quanh trục \(Ox\) là
Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:
