Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Cách 1: Thử đáp án
Với $m = 0$ ta có $x = 0$ là nghiệm của đa thức $2{x^2} - 3{\text{x}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 3\left( {x \ne 0} \right)$ không có tiệm cận đứng.
Với $m = 1$ ta có $x = 1$ là nghiệm của đa thức $2{x^2} - 3{\text{x + 1}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 1\left( {x \ne 1} \right)$ không có tiệm cận đứng.
Cách 2: Chia đa thức

Để hàm số không có tiệm cận đứng thì tử số phải chia hết cho mẫu số
$ \Leftrightarrow 2{m^2} - 2m = 0 \Leftrightarrow m = 0$ hoặc $m = 1$
Hướng dẫn giải:
Đồ thị hàm số $y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ không có tiệm cận đứng nếu mọi nghiệm của $g\left( x \right)$ (nếu có) đều là nghiệm của $f\left( x \right)$.
Giải thích thêm:
Cần nắm chắc kiến thức về tiệm cận đứng, tránh nhầm lẫn coi hàm số đã cho là hàm phân thức thì $x = m$ luôn là tiệm cận đứng dẫn đến chọn sai đáp án D
Cách 1: Thử đáp án
Với $m = 0$ ta có $x = 0$ là nghiệm của đa thức $2{x^2} - 3{\text{x}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 3\left( {x \ne 0} \right)$ không có tiệm cận đứng.
Với $m = 1$ ta có $x = 1$ là nghiệm của đa thức $2{x^2} - 3{\text{x + 1}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 1\left( {x \ne 1} \right)$ không có tiệm cận đứng.
Cách 2: Chia đa thức

Để hàm số không có tiệm cận đứng thì tử số phải chia hết cho mẫu số
$ \Leftrightarrow 2{m^2} - 2m = 0 \Leftrightarrow m = 0$ hoặc $m = 1$
Hướng dẫn giải:
Đồ thị hàm số $y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ không có tiệm cận đứng nếu mọi nghiệm của $g\left( x \right)$ (nếu có) đều là nghiệm của $f\left( x \right)$.
Giải thích thêm:
Cần nắm chắc kiến thức về tiệm cận đứng, tránh nhầm lẫn coi hàm số đã cho là hàm phân thức thì $x = m$ luôn là tiệm cận đứng dẫn đến chọn sai đáp án D
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ xác định liên tục trên R có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Cho hai hàm số $y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}$ và $y = \dfrac{{5 - 2x}}{{x + 4}}$. Tập hợp các giá trị của tham số $m$ để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Độ dài đoạn thẳng \(AB\) với \(A\left( {2;1;0} \right),B\left( {4; - 1;1} \right)\) là một số:
Cho hai điểm \(M\left( {1; - 2; - 4} \right),M'\left( {5; - 4;2} \right)\). Biết \(M'\) là hình chiếu của \(M\) lên mặt phẳng \(\left( P \right)\). Khi đó, phương trình \(\left( P \right)\) là:
Cho số dương \(a\) thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y=a{{x}^{2}}-2\) và \(y=4-2a{{x}^{2}}\) có diện tích bằng $16$. Giá trị của \(a\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ a;b \right]\) và cắt trục hoành tại điểm \(x=c\,\,\left( a<c<b \right)\) (như hình vẽ bên) Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a;x=b\). Mệnh đề nào dưới đây đúng ?

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\) thỏa mãn hệ thức \(\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm \(M\) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Cho khối đa diện lồi có số đỉnh, số mặt và số cạnh lần lượt là \(D,M,C\). Chọn mệnh đề đúng:
Hình trụ có bán kính \(r = 5cm\) và chiều cao \(h = 3cm\) có diện tích toàn phần gần với số nào sau đây?
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Một người vay ngân hàng một số tiền với lãi suất mỗi tháng là $1,12\% $. Biết cuối mỗi tháng người đó phải trả cho ngân hàng $3.000.000$ đồng và trả trong $1$ năm thì hết nợ. Số tiền người đó vay là:
