Đường trung bình của tam giác, hình thang
1. Kiến thức cần nhớ
Đường trung bình của tam giác

Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
Định lý 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
Định lý 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Ví dụ:

+ ΔABC có D là trung điểm của AB , E là trung điểm của AC nên DE là đường trung bình của tam giác ABC ⇒DE//BC;DE=12BC.
+ Nếu {DA=DBDE//BC⇒EC=EA .
Đường trung bình của hình thang

Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
Định lí 4: Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
Ví dụ:

+ Hình thang ABCD (hình vẽ) có E là trung điểm AD , F là trung điểm của BC nên EF là đường trung bình của hình thang ⇒{EF//DCEF=AB+DC2
2. Các dạng toán thường gặp
Dạng 1: Chứng minh các hệ thức về cạnh và góc. Tính các cạnh và góc.
Phương pháp:
Sử dụng tính chất đường trung bình của tam giác và hình thang.
+ Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
+ Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
+ Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
+ Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
Dạng 2: Chứng minh một cạnh là đường trung bình của tam giác, hình thang.
Phương pháp:
Sử dụng định nghĩa đường trung bình của tam giác và hình thang.
+ Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
+ Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.