Đối xứng tâm
I. Các kiến thức cần nhớ
1. Hai điểm đối xứng qua một điểm

Định nghĩa: Hai điểm A, B gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.
Quy ước: Điểm đối xứng với điểm O qua điểm O cũng là điểm O
Ví dụ: B đối xứng với A qua O nếu O là trung điểm của AB

2. Hai hình đối xứng qua một điểm
Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với mỗi điểm thuộc hình kia qua điểm O và ngược lại. Điểm O gọi là tâm đối xứng của hai hình đó.
Chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.
3. Hình có tâm đối xứng
Định nghĩa: Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm O cũng thuộc hình H . Ta nói hình H có tâm đối xứng.
Định lý: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.
Ví dụ: Giao điểm O của AC và BD là tâm của hình bình hành ABCD.

II. Các dạng toán thường gặp
Dạng 1: Tính độ dài cạnh, chu vi tam giác, tứ giác.
Phương pháp:
Sử dụng chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.
Dạng 2: Xác định tâm đối xứng của một hình. Xác định các yếu tố đối xứng nhau qua một điểm. Chứng minh các hệ thức hình học.
Phương pháp:
Ta thường sử dụng các định nghĩa và định lý sau:
+ Hai điểm A, B gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.
+ Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.