Phương pháp giải bài tập mạch xoay chiều RLC - có R thay đổi
Các dạng bài tập - Phương pháp
I - R THAY ĐỔI ĐỂ PMAX
1. Mạch RLC có cuộn dây thuần cảm (r=0)
\(P = UIc{\rm{os}}\varphi {\rm{ = }}{{\rm{I}}^2}R = \frac{{{U^2}}}{{{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}R = \frac{{{U^2}}}{{R + \frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}}}\)
Để \({P_{max}} \to {\left( {R + \frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}} \right)_{\min }}\)
Ta có: \(R + \frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R} \ge 2\sqrt {R\frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}} = 2\left| {{Z_L} - {Z_C}} \right|\)
Dấu “=” xảy ra \( \leftrightarrow {R^2} = {({Z_L} - {Z_C})^2} \to R = \left| {{Z_L} - {Z_C}} \right|\)
2. Mạch RLC có cuộn dây không thuần cảm (r≠0)
- Công suất trên toàn mạch:
\(P{\rm{ = }}{{\rm{I}}^2}(R + r) = \frac{{{U^2}}}{{{{(R + r)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}(R + r) = \frac{{{U^2}}}{{R + r + \frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{{R + r}}}}\)
Để \({P_{max}} \to {\left( {R + r + \frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{{R + r}}} \right)_{\min }}\)
Ta có: \((R + r) + \frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{{R + r}} \ge 2\sqrt {(R + r)\frac{{{{\left( {{Z_L} - {Z_C}} \right)}^2}}}{{R + r}}} = 2\left| {{Z_L} - {Z_C}} \right|\)
Dấu “=” xảy ra \( \leftrightarrow {(R + r)^2} = {({Z_L} - {Z_C})^2} \to R + r = \left| {{Z_L} - {Z_C}} \right| \to R = \left| {{Z_L} - {Z_C}} \right| - r\)
Chú ý: Nếu \(r > {Z_L} - {Z_C} \to {P_{{\rm{max}}}} \leftrightarrow R = 0,{P_{{\rm{max}}}} = \frac{{{U^2}}}{{{r^2} + {{({Z_L} - {Z_C})}^2}}}r\)
- Công suất trên R: \(P{\rm{ = }}\frac{{{U^2}}}{{{{(R + r)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}R = \frac{{{U^2}}}{{R + 2r + \frac{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}}}\)
\(\begin{array}{l}A = R + 2r + \frac{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}\\{A_{\min }} \leftrightarrow {\left( {R + \frac{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}} \right)_{\min }}\\R + \frac{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R} \ge 2\sqrt {R.\frac{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}{R}} = 2\sqrt {{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} \end{array}\)
Dấu “=” xảy ra: \( \leftrightarrow {R^2} = {r^2} + {\left( {{Z_L} - {Z_C}} \right)^2},{P_{{\rm{max}}}} = \frac{{{U^2}}}{{2{\rm{r}} + 2\sqrt {{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
- Công suất trên r: \({P_r}{\rm{ = }}\frac{{{U^2}r}}{{{{(R + r)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}\)
\({P_{r{\rm{ }}max}} = \frac{{{U^2}r}}{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}\) xảy ra khi R=0
II- KHI R=R1 HOẶC R=R2 THÌ P CÓ CÙNG 1 GIÁ TRỊ (P<PMAX) (CUỘN DÂY THUẦN CẢM)
\(\begin{array}{l}P = \frac{{{U^2}}}{{{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}R\\ \to P({R^2} + {\left( {{Z_L} - {Z_C}} \right)^2}) = {U^2}R\\ \leftrightarrow P{R^2} - {U^2}R + {\left( {{Z_L} - {Z_C}} \right)^2}P = 0\\ \leftrightarrow {R^2} - \frac{{{U^2}R}}{P} + {\left( {{Z_L} - {Z_C}} \right)^2} = 0{\rm{ }}(1)\end{array}\)
PT (1) có 2 nghiệm: R1, R2 : \(\left\{ \begin{array}{l}{R_1} + {R_2} = \frac{{{U^2}}}{P}\\{R_1}{R_2} = {\left( {{Z_L} - {Z_C}} \right)^2} \end{array} \right.\)