Phương pháp giải bài tập dao động điều hòa - Viết phương trình dao động điều hòa

Phương pháp giải bài tập dao động điều hòa - Viết phương trình dao động điều hòa MÔN LÝ Lớp 12 với nhiều phương pháp giải nhanh kèm bài tập vận dụng
(444) 1481 26/07/2022

I. Bảng tóm tắt các bước viết phương trình dao động điều hòa

II. Phương pháp giải bài tập dao động điều hòa - Viết phương trình dao động điều hòa

I- DẠNG 1: VIẾT PHƯƠNG TRÌNH DAO ĐỘNG ĐIỀU HÒA.

1. Phương pháp.

Phương trình dao động tổng quát: x=Acos(ωt+φ)

- Bước 1: Tìm A: {A=vmaxω=amaxω2=L2=S4=vmax2amaxA2=x2+v2ω2=aω42+v2ω2

  • L: chiều dài quỹ đạo của dao động
  • S: quãng đường vật đi được trong một chu kì

- Bước 2: Tìm Tìm  ω: ω=km=2πf=2πT=amaxA=vmaxA=amaxvmax=v2A2x2

Trong đó:

  • Chu kì T: T=tN
  • Tần số f: f=Nt
  • N là số dao động vật thực hiện được trong khoảng thời gian t

- Bước 3: Tìm φ

Tại t = 0: {x=Acosφv=Aωsinφ{cosφ=x0Asinφ=vAωφ=?

  • nếu v>0sinφ<0 vật chuyển động theo chiều dương
  • nếu v<0sinφ>0 vật chuyển động theo chiều âm

Ta có thể thay đổi thứ tự các bước tùy theo tính chất đề bài.

2. Ví dụ:

Ví dụ 1: Một vật nhỏ dao động điều hòa theo trục Ox (VTCB là O) với biên độ 4cm và tần số 10Hz. Tại thời điểm t = 0, vật có li độ 4cm. Phương trình dao động của vật là:

A. x=4cos(20πt+π)

B. x=4cos(20πt)

C. x=4cos(10t+π)

D. x=4cos(10t)

Hướng dẫn:

Ta có:

A=4cm

f=10Hzω=2πf=2π.10=20πrad/s

Tại t = 0: x=Aφ=0

=> Phương trình dao động : x=4cos(20πt)

Chọn B

 Ví dụ 2: Một chất điểm dao động điều hòa trên trục Ox. Trong thời gian 31,4s chất điểm thực hiện được 100 dao động thành phần. Chọn gốc thời gian lúc vật đi qua vị trí có li độ x=2cm theo chiều âm với tốc độ 403cm/s. Phương trình dao động của chất điểm là:

A. x=0,04cos(20t+π3)cm

B. x=4cos(10πt+π3)cm

C. x=0,04cos(10πt+π3)cm

D. x=4cos(20t+π3)cm

Hướng dẫn:

Chu kì: T=tN=31,4100=0,314s

ω=2πT=2π0,314=20rad/s

Sử dụng hệ thức độc lập A-x-v:

A2=x2+v2ω2=22+(403)2202=16A=4cm

Tại t = 0: {x=2v<0{Acosφ=2sinφ>0{cosφ=24=12sinφ>0φ=π3

=> Phương trình dao động: x=4cos(20t+π3)cm

Chọn D

II- DẠNG 2: CHO PHƯƠNG TRÌNH VẬN TỐC HOẶC GIA TỐC - TÌM PHƯƠNG TRÌNH LI ĐỘ X

1. Phương pháp:

Giả sử phương trình của v và a là: {v=ωAcos(ωt+φv)a=ωAcos(ωt+φa)

- Bước 1: Tìm A, ω: từ phương trình của v hoặc a.

- Bước 2: Tìm φx:{φx=φvπ2φx=φaπ

(do vận tốc nhanh pha hơn x một góc π/2 và gia tốc a ngược pha với x)

2. Ví dụ:

Cho phương trình của vận tốc là v=8πcos(2πt+π3)cm/s. Tìm phương trình của li độ x.

Hướng dẫn:

Từ phương trình vận tốc, ta có: ω=2πrad/s , A=vmaxω=8π2π=4cm

φx=φvπ2=π3π2=π6

=> Phương trình của li độ x: x=4cos(2πtπ6)cm

III- DẠNG 3: DAO ĐỘNG CÓ PHƯƠNG TRÌNH ĐẶC BIỆT

Phương pháp:

- x=a±Acos(ωt+φ) với a = const

  • Biên độ là A
  • tần số góc là ω
  • pha ban đầu φ
  • x là toạ độ
  • x0=Acos(ωt+φ) là li độ.
  • Toạ độ vị trí cân bằng x=a
  • toạ độ vị trí biên x=a±A
  • Vận tốc v=x=x0
  • gia tốc a=v=x

Hệ thức độc lập: a{\rm{ }} =  - {\omega ^2}{x_0};{A^2} = x_0^2 + {(\frac{v}{\omega })^2}

- x = a \pm Aco{s^2}(\omega t{\rm{ }} + \varphi ) (ta hạ bậc)

  • Biên độ A/2
  • tần số góc 2\omega
  • pha ban đầu 2\varphi
(444) 1481 26/07/2022