Phương pháp giải bài tập giao thoa ánh sáng đơn sắc - Tính chất vân tại điểm M, số vân trên màn

Phương pháp giải bài tập giao thoa ánh sáng đơn sắc, tính chất vân tại điểm M, số vân trên màn MÔN LÝ Lớp 12 với nhiều phương pháp giải nhanh kèm bài tập vận dụng
(390) 1300 26/07/2022

I - KIẾN THỨC CẦN NHỚ.

Khoảng vân i: \(i = \dfrac{{\lambda D}}{a}\) 

=> \(x_s = k.i\);  \(x_t = (k + \dfrac{1}{2})i\)

Trong đó:

  • λ là bước sóng ánh sáng (m)
  • D là khoảng cách từ mặt phẳng S1S2 đến màn M
  • a là khoảng cách giữa hai khe S1S2

II - CÁC DẠNG - PHƯƠNG PHÁP GIẢI

1. Dạng 1: Xác định tính chất vân tại điểm M biết trước tọa độ xM

Phương pháp:

Bước 1: Lập tỉ số \(\dfrac{{{x_M}}}{i} = a\)

Bước 2: Xét:

  • Nếu \(a = k \in Z\) thì M là vân sáng bậc k
  • Nếu \(a = k + 0,5(k \in Z)\) thì M là vân tối

2. Dạng 2: Xác định số vân sáng, tối trên màn

- TH 1: Màn đối xứng hay M, N đối xứng nhau qua vân sáng trung tâm (MN = L )

- Cách giải đại số:

\( - \dfrac{L}{2} \le {x_M} \le \dfrac{L}{2} \leftrightarrow \left\langle \begin{array}{l} - \dfrac{L}{2} \le ki \le \dfrac{L}{2} \to \left\{ \begin{array}{l} - \dfrac{L}{{2i}} \le k \le \dfrac{L}{{2i}}\\k \in Z\end{array} \right.{\rm{                             (1)}}\\ - \dfrac{L}{2} \le (k + 0,5)i \le \dfrac{L}{2} \to \left\{ \begin{array}{l} - \dfrac{1}{2} - \dfrac{L}{{2i}} \le k \le  - \dfrac{1}{2} + \dfrac{L}{{2i}}\\k \in Z\end{array} \right.{\rm{    (2)}}\end{array} \right.\)

(1): xác định số vân sáng

(2): xác định số vân tối

- Cách giải nhanh:

  • Số vân sáng: \({N_S} = 2\left[ {\dfrac{L}{{2i}}} \right] + 1\) , trong đó: \(\left[ {\dfrac{L}{{2i}}} \right]\) là phần nguyên của \(\dfrac{L}{{2i}}\)

Ví dụ: \(\left[ {\dfrac{L}{{2i}}} \right] = \left[ {3,7} \right] = 3\)

  • Số vân tối:

Nếu phần thập phân của \(\dfrac{L}{{2i}} < 0,5\)thì Nt = NS - 1

Nếu phần thập phân của \(\dfrac{L}{{2i}} \ge 0,5\)thì Nt = NS + 1

- TH 2: M, N không đối xứng nhau qua vân sáng trung tâm (M, N khác phía so với vân sáng trung tâm)

- Cách giải đại số:

\( - ON \le {x_M} \le OM \leftrightarrow \left\langle \begin{array}{l} - ON \le ki \le OM \to \left\{ \begin{array}{l} - \dfrac{{ON}}{i} \le k \le \frac{{OM}}{i}\\k \in Z\end{array} \right.{\rm{                                (1)}}\\ - ON \le (k + 0,5) \le OM \to \left\{ \begin{array}{l} - \dfrac{1}{2} - \dfrac{{ON}}{i} \le k \le  - \dfrac{1}{2} + \dfrac{{OM}}{i}\\k \in Z\end{array} \right.{\rm{    (2)}}\end{array} \right.\)

(1): xác định số vân sáng

(2): xác định số vân tối

- Cách giải nhanh:

\({N_S} = \left[ {\dfrac{{ON}}{i}} \right] + \left[ {\dfrac{{OM}}{i}} \right] + 1\)

\({N_t} = \left[ {\dfrac{{ON}}{i} + 0,5} \right] + \left[ {\dfrac{{OM}}{i} + 0,5} \right]\)

- TH 3: M, N cùng phía so với vân sáng trung tâm

- Cách giải đại số:

\(ON \le {x_M} \le OM \leftrightarrow \left\langle \begin{array}{l}ON \le ki \le OM \to \left\{ \begin{array}{l}\dfrac{{ON}}{i} \le k \le \dfrac{{OM}}{i}\\k \in Z\end{array} \right.{\rm{                                (1)}}\\ON \le (k + 0,5) \le OM \to \left\{ \begin{array}{l} - \dfrac{1}{2} + \dfrac{{ON}}{i} \le k \le  - \dfrac{1}{2} + \dfrac{{OM}}{i}\\k \in Z\end{array} \right.{\rm{    (2)}}\end{array} \right.\)

(1): xác định số vân sáng

(2): xác định số vân tối

- Cách giải nhanh:

\({N_S} = \left[ {\dfrac{{OM}}{i}} \right] - \left[ {\dfrac{{ON}}{i}} \right]\)

\({N_t} = \left[ {\dfrac{{OM}}{i} + 0,5} \right] - \left[ {\dfrac{{ON}}{i} + 0,5} \right]\)

(390) 1300 26/07/2022