Phép nhân, phép chia phân số

Lý thuyết về phép nhân, phép chia phân số môn toán lớp 6 sách Cánh Diều với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(392) 1305 26/09/2022

I. Nhân hai phân số

+ Muốn nhân hai phân số, ta nhân các tử số với nhau và nhân các mẫu với nhau.

$\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{{a.c}}{{b.d}}$

+ Muốn nhân một số nguyên với một phân số (hoặc một phân số với một số nguyên), ta nhân số nguyên với tử của phân số và giữ nguyên mẫu: $a.\dfrac{b}{c} = \dfrac{{a.b}}{c}.$

Ví dụ:

a) $\dfrac{{ - 1}}{4}.\dfrac{1}{5} = \dfrac{{\left( { - 1} \right).1}}{{4.5}} = \dfrac{{ - 1}}{{20}}$

b) $2.\dfrac{4}{5} = \dfrac{{2.4}}{5} = \dfrac{8}{5}$.

II. Một số tính chất của phép nhân phân số

+ Tính chất giao hoán: $\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}$

+ Tính chất kết hợp: $\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{p}{q} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{p}{q}} \right)$

+ Nhân với số $1$: $\dfrac{a}{b}.1 = 1.\dfrac{a}{b} = \dfrac{a}{b}$, nhân với số $0$$\dfrac{a}{b}.0 = 0$

+ Tính chất phân phối của phép nhân đối với phép cộng:

$\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{p}{q}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{p}{q}$

Ví dụ:

a) $\dfrac{{ - 3}}{{29}}.\dfrac{9}{{14}}.\dfrac{{ - 29}}{3} = \dfrac{{ - 3}}{{29}}.\dfrac{{ - 29}}{3}.\dfrac{9}{{14}} = \left( {\dfrac{{ - 3}}{{29}}.\dfrac{{ - 29}}{3}} \right).\dfrac{9}{{14}} = 1.\dfrac{9}{{14}} = \dfrac{9}{{14}}$

b)

$\begin{array}{l}\dfrac{7}{{23}}.\dfrac{{24}}{{11}} + \dfrac{7}{{23}}.\dfrac{{ - 2}}{{11}} = \dfrac{7}{{23}}.\left( {\dfrac{{24}}{{11}} + \dfrac{{ - 2}}{{11}}} \right)\\ = \dfrac{7}{{23}}.2 = \dfrac{{14}}{{23}}\end{array}.$

III. Chia phân số

a) Số nghịch đảo

Hai số gọi là nghịch đảo của nhau nếu tích của chúng bằng $1$.

Ví dụ: Số nghịch đảo của $\dfrac{5}{6}$ là $\dfrac{6}{5}$; số nghịch đảo của $ - 5$ là $ - \dfrac{1}{5}$.

b) Qui tắc chia hai phân số

Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia.

$\dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c} = \dfrac{{a.d}}{{b.c}}$

$a:\dfrac{c}{d} = a.\dfrac{d}{c} = \dfrac{{a.d}}{c}\left( {c \ne 0} \right)$

Ví dụ: $\dfrac{{ - 1}}{6}:\dfrac{3}{{13}} = \dfrac{{ - 1}}{6}.\dfrac{{13}}{3} = \dfrac{{\left( { - 1} \right).13}}{{6.3}} = \dfrac{{ - 13}}{{18}}$.

(392) 1305 26/09/2022