Đề kiểm tra chương 2: Hàm số lũy thừa, mũ, logarit - Toán 12

Đề kiểm tra 1 tiết chương 2: Hàm số lũy thừa, mũ và logarit - Đề số 2

  • Hocon247

  • 25 câu hỏi

  • 45 phút

  • 589 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 146059

Tính tổng \(T\) tất cả các nghiệm của phương trình \({\left( {x - 3} \right)^{2{x^2} - 5x}} = 1\).

Xem đáp án
Đáp án đúng: a

Ta xét các trường hợp sau:

TH1. \(x - 3 = 1 \Leftrightarrow x = 4\) thỏa mãn phương trình.

TH2: \(x-3=-1\Leftrightarrow x = 2\) thỏa mãn phương trình.

TH3. \(\left\{ \begin{array}{l}x - 3 \ne 0\\2{x^2} - 5x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{5}{2}\end{array} \right.\).

Vậy phương trình đã cho có ba nghiệm \(x = 0;x=2;{\rm{ }}x = \dfrac{5}{2};{\rm{ }}x = 4\) \( \Rightarrow T = \dfrac{{17}}{2}\)

Hướng dẫn giải:

Xét lần lượt các trường hợp cơ số bằng \(1\) và cơ số khác \(1\), tìm nghiệm trong từng trường hợp và kết luận.

Giải thích thêm:

Chúng ta có thể sẽ quên mất trường hợp xét \(x=2\) dẫn đến thiếu nghiệm và chọn C là sai.

Câu 2: Trắc nghiệm ID: 146060

Mệnh đề nào đúng với mọi số thực dương $x,y$?

Xem đáp án
Đáp án đúng: b

${2^{\sqrt x }} \ne {x^{\sqrt 2 }}$ nên A sai.

${3^{\sqrt {xy} }} = {3^{\sqrt x .\sqrt y }} = {\left( {{3^{\sqrt x }}} \right)^{\sqrt y }}$ nên B đúng.

$\dfrac{{{3^{\sqrt[3]{x}}}}}{{{3^{\sqrt[3]{y}}}}} = {3^{\sqrt[3]{x} - \sqrt[3]{y}}} \ne {3^{\sqrt[3]{{x - y}}}}$ nên C sai.

${x^{\sqrt 3 }} \ne {y^{\sqrt 3 }}$ nếu $x \ne y$  nên D sai.

Giải thích thêm:

HS thường chọn nhầm đáp án C vì nghĩ $\sqrt[3]{{x - y}} = \sqrt[3]{x} - \sqrt[3]{y}$.

Câu 3: Trắc nghiệm ID: 146061

Cho các số \(a,\ b,\ c\) và \(a,\ c\ne 1\). Khẳng định nào sau đây đúng?

Xem đáp án
Đáp án đúng: c

Ta có: \(\frac{{{\log }_{a}}b}{{{\log }_{a}}c}=\frac{{{\log }_{a}}c.{{\log }_{c}}b}{{{\log }_{a}}c}={{\log }_{c}}b.\)

Hướng dẫn giải:

Áp dụng các công thức cơ bản của hàm số logarit: \({{\log }_{a}}c={{\log }_{a}}b.{{\log }_{b}}c.\)

Câu 4: Trắc nghiệm ID: 146062

Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?

Xem đáp án
Đáp án đúng: d

Hàm số \(y = {x^{ - 4}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\) và có \(y' =  - 4{x^{ - 5}}\) nên không đồng biến trên các khoảng xác định (đồng biến trên \(\left( { - \infty ,0} \right)\) và nghịch biến trên \(\left( {0, + \infty } \right)\)), loại A.

Hàm số \(y = {x^{ - \dfrac{3}{4}}}\) có tập xác định là \(\left( {0, + \infty } \right)\) và có \(y' =  - \dfrac{3}{4}{x^{ - \dfrac{7}{4}}} < 0,\forall x \in \left( {0, + \infty } \right)\) nên không đồng biến trên từng khoảng xác định, loại B.

Hàm số \(y = {x^4}\) có tập xác định là \(\mathbb{R}\) và có \(y' = 4{x^3}\) nên không đồng biến trên các khoảng xác định, loại C.

Hàm số \(y = \sqrt[3]{x}\) có tập xác định là \(\mathbb{R}\) và có \(y' = \dfrac{1}{{3\sqrt[3]{{{x^2}}}}} > 0\) nên hàm số đồng biến trên các khoảng xác định.

Hướng dẫn giải:

Tính đạo hàm của mỗi hàm số rồi xét dấu đạo hàm trên khoảng xác định \(D\).

Nếu \(y' \ge 0\) và bằng \(0\) tại hữu hạn điểm thuộc \(D\) thì hàm số đồng biến trên \(D\).

Câu 5: Trắc nghiệm ID: 146063

Giá trị của $x$ thỏa mãn \({\log _{\frac{1}{2}}}(3 - x) = 2\) là

Xem đáp án
Đáp án đúng: d

Phương trình tương đương với:

\(3 - x = {\left( {\dfrac{1}{2}} \right)^2} \Leftrightarrow x = \dfrac{{11}}{4}\)

Vậy $x = \dfrac{{11}}{4}$.

Hướng dẫn giải:

Sử dụng phương pháp giải phương trình logarit cơ bản \({\log _a}x = m\left( {0 < a \ne 1} \right) \Leftrightarrow x = {a^m}\)

Giải thích thêm:

Nhiều HS sẽ giải sai như sau: \({\log _{\dfrac{1}{2}}}(3 - x) = 2 \Leftrightarrow 3 - x = {2^{\dfrac{1}{2}}} = \sqrt 2  \Leftrightarrow x = 3 - \sqrt 2 \) và chọn C là sai.

Câu 6: Trắc nghiệm ID: 146064

Cho hệ phương trình \(\left\{ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^{2x - y}} + 6{\left( {\dfrac{2}{3}} \right)^{\dfrac{{2x - y}}{2}}} - 7 = 0\\{3^{{{\log }_9}\left( {x - y} \right)}} = 1\end{array} \right.\). Chọn khẳng định đúng?

Xem đáp án
Đáp án đúng: b

Điều kiện: \(x - y > 0 \Leftrightarrow x > y\). Do đó B đúng và các đáp án còn lại sai.

Hướng dẫn giải:

Biểu thức \(y = {\log _a}f\left( x \right)\) xác định nếu \(f\left( x \right)\) xác định và \(f\left( x \right) > 0\).

Câu 7: Trắc nghiệm ID: 146065

Tập xác định của hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \)  là:

Xem đáp án
Đáp án đúng: d

Hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) xác định

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\log _{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge 0\\\dfrac{{3 - 2x - {x^2}}}{{x + 1}} > 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge {\log _{\dfrac{1}{2}}}1\\\dfrac{{ - \left( {x - 1} \right)\left( {x + 3} \right)}}{{x + 1}} > 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \le 1\\\left[ \begin{array}{l}x <  - 3\\ - 1 < x < 1\end{array} \right.\\x \ne  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{3 - 2x - {x^2} - x - 1}}{{x + 1}} \le 0\\\left[ \begin{array}{l}x <  - 3\\ - 1 < x < 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{ - {x^2} - 3x + 2}}{{x + 1}} \le 0\\\left[ \begin{array}{l}x <  - 3\\ - 1 < x < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\dfrac{{ - 3 - \sqrt {17} }}{2} \le x \le  - 1\\x \ge \dfrac{{ - 3 + \sqrt {17} }}{2}\end{array} \right.\\\left[ \begin{array}{l}x <  - 3\\ - 1 < x < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\dfrac{{ - 3 - \sqrt {17} }}{2} \le x <  - 3\\\dfrac{{ - 3 + \sqrt {17} }}{2} \le x < 1\end{array} \right.\end{array}\)

Vậy tập xác định của phương trình là \(D = \left[ {\dfrac{{ - 3 - \sqrt {17} }}{2}; - 3} \right) \cup \left[ {\dfrac{{ - 3 + \sqrt {17} }}{2};1} \right)\)

Hướng dẫn giải:

Hàm số \(y = {\log _a}x\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\0 < a \ne 1\end{array} \right.\)

Hàm số \(y = \sqrt A \) xác định \( \Leftrightarrow A \ge 0\)

Hàm số có dạng \(\dfrac{A}{B}\) xác định khi và chỉ khi \(B \ne 0\).

Câu 8: Trắc nghiệm ID: 146066

Tính giá trị \({\left( {\dfrac{1}{{16}}} \right)^{ - 0,75}} + {\left( {\dfrac{1}{8}} \right)^{ - \frac{4}{3}}},\)ta được kết quả là:

Xem đáp án
Đáp án đúng: a

\({\left( {\dfrac{1}{{16}}} \right)^{ - 0,75}} + {\left( {\dfrac{1}{8}} \right)^{ - \frac{4}{3}}} = {16^{0,75}} + {8^{\frac{4}{3}}} = {\left( {{2^4}} \right)^{\frac{3}{4}}} + {\left( {{2^3}} \right)^{\frac{4}{3}}} = {2^3} + {2^4} = 24\).

Hướng dẫn giải:

Sử dụng công thức \(\dfrac{1}{{{x^m}}} = {x^{ - m}},\,\,{\left( {{x^m}} \right)^n} = {x^{mn}}\).

Câu 9: Trắc nghiệm ID: 146067

Công thức nào sau đây là công thức tăng trưởng mũ?

Xem đáp án
Đáp án đúng: a

Công thức lãi kép (hoặc công thức tăng trưởng mũ):

\(T = A.{e^{Nr}}\), ở đó \(A\) là số tiền gửi ban đầu, \(r\) là lãi suất, \(N\) là số kì hạn.

Câu 10: Trắc nghiệm ID: 146068

Cho số nguyên dương \(n \ge 2\) và các số thực \(a,b\), nếu có \({a^n} = b\) thì:

Xem đáp án
Đáp án đúng: c

Cho số thực \(b\) và số nguyên dương \(n\left( {n \ge 2} \right)\). Nếu có \({a^n} = b\) thì \(a\) được gọi là căn bậc \(n\) của \(b\).

Hướng dẫn giải:

Cho số thực \(b\) và số nguyên dương \(n\left( {n \ge 2} \right)\). Số \(a\) được gọi là căn bậc \(n\) của số \(b\) nếu \({a^n} = b\).

Câu 11: Trắc nghiệm ID: 146069

 Mệnh đề nào sau đây là mệnh đề đúng ?

Xem đáp án
Đáp án đúng: b

\(0<2-\sqrt{2}<1\Rightarrow {{\left( 2-\sqrt{2} \right)}^{3}}>{{\left( 2-\sqrt{2} \right)}^{4}}\Rightarrow \)Đáp án A sai.

\(4-\sqrt{2}>1\Rightarrow {{\left( 4-\sqrt{2} \right)}^{3}}<{{\left( 4-\sqrt{2} \right)}^{4}}\Rightarrow \)Đáp án B đúng.

\(\sqrt{11}-\sqrt{2}>1\Rightarrow {{\left( \sqrt{11}-\sqrt{2} \right)}^{6}}<{{\left( \sqrt{11}-\sqrt{2} \right)}^{7}}\Rightarrow \) Đáp án C sai.

\(0<\sqrt{3}-\sqrt{2}<1\Rightarrow {{\left( \sqrt{3}-\sqrt{2} \right)}^{4}}>{{\left( \sqrt{3}-\sqrt{2} \right)}^{5}}\Rightarrow \)Đáp án D sai.

Hướng dẫn giải:

\({a^x} < {a^y} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\x < y\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\x > y\end{array} \right.\end{array} \right.\)

Câu 12: Trắc nghiệm ID: 146070

Đề thi THPT QG – 2021 lần 1– mã 104

Tập xác định của hàm số \(y = {8^x}\)

Xem đáp án
Đáp án đúng: b

Tập xác định của hàm số \(y = {8^x}\)\(\mathbb{R}\)

Hướng dẫn giải:

Tập xác định của hàm số mũ \(y = {a^x}\)\(\mathbb{R}\)

Câu 13: Trắc nghiệm ID: 146071

Tìm tập nghiệm $S$ của bất phương trình ${2^{x - 1}} > {\left( {\dfrac{1}{{16}}} \right)^{\frac{1}{x}}}$ .

Xem đáp án
Đáp án đúng: a

Ta có

\({2^{x - 1}} > {\left( {\dfrac{1}{{16}}} \right)^{\frac{1}{x}}} \Leftrightarrow {2^{x - 1}} > {\left( {{2^{ - 4}}} \right)^{\frac{1}{x}}} \Leftrightarrow {2^{x - 1}} > {2^{ - \frac{4}{x}}} \)

$\Leftrightarrow x - 1 >  - \dfrac{4}{x} \Leftrightarrow x + \dfrac{4}{x} - 1 > 0 \Leftrightarrow \dfrac{{{x^2} - x + 4}}{x} > 0$

Vì ${x^2} - x + 4 > 0$ nên suy ra $x > 0$ 

Hướng dẫn giải:

Biến đổi đưa bất phương trình đã cho về dạng cơ bản \({2^x} > {2^y}\) . Sử dụng tính đồng biến, nghịch biến của hàm số mũ:

            Khi \(a > 1\) thì \({a^x} > {a^y} \Leftrightarrow x > y\)

            Khi \(0 < a < 1\) thì \({a^x} > {a^y} \Leftrightarrow x < y\)

Câu 14: Trắc nghiệm ID: 146072

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:

Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:

Đề kiểm tra 1 tiết chương 2: Hàm số lũy thừa, mũ và logarit - Đề số 2 - ảnh 1
Xem đáp án
Đáp án đúng: d

Dựa vào đồ thị hàm số ta thấy \({x_1}\) là nghiệm của phương trình hoành độ giao điểm \({\log _b}{x_1} = 3 \Leftrightarrow {x_1} = {b^3}.\)

Và \({x_2}\) là nghiệm của phương trình hoành độ giao điểm \({\log _a}{x_2} = 3 \Leftrightarrow {x_2} = {a^3}.\)

Theo đề bài ta có: \({x_2} = 2{x_1} \Rightarrow {a^3} = 2{b^3} \Leftrightarrow \dfrac{{{a^3}}}{{{b^3}}} = 2 \Leftrightarrow \dfrac{a}{b} = \sqrt[3]{2}.\)

Hướng dẫn giải:

Dựa vào đồ thị hàm số, xác định các giá trị của \({x_1},\,{x_2}\) theo \(a\) và \(b.\)  Từ đó tính giá trị của \(\dfrac{a}{b}.\)

Câu 15: Trắc nghiệm ID: 146073

Với \(a,\,b\) là các số thực dương bất kì, \({\log _2}\dfrac{a}{{{b^2}}}\) bằng:

Xem đáp án
Đáp án đúng: c

Ta có: \({\log _2}\dfrac{a}{{{b^2}}} = {\log _2}a - {\log _2}{b^2} = {\log _2}a - 2{\log _a}b.\)

Hướng dẫn giải:

Sử dụng các công thức: \(lo{g_a}\dfrac{b}{c} = lo{g_a}b - lo{g_a}c;\,\,\,{\log _{{a^m}}}b = \dfrac{1}{m}{\log _a}b;\,\,\,{\log _a}{b^n} = n{\log _a}b.\)

Câu 16: Trắc nghiệm ID: 146074

Cho hàm số \(f\left( x \right) = {\left( {{x^{1 + \dfrac{1}{{2{{\log }_4}x}}}} + {8^{\dfrac{1}{{3{{\log }_{{x^2}}}2}}}} + 1} \right)^{\dfrac{1}{2}}} - 1\)  với \(0 < x \ne 1\). Tính giá trị biểu thức \(P = f\left( {f\left( {2018} \right)} \right)\).

Xem đáp án
Đáp án đúng: c

Ta có:

\(\begin{array}{l}{x^{1 + \dfrac{1}{{2{{\log }_4}x}}}} = {x^{1 + \dfrac{1}{{{{\log }_2}x}}}} = {x^{1 + {{\log }_x}2}} = {x^{{{\log }_x}2x}} = 2x\\{8^{\dfrac{1}{{3{{\log }_{{x^2}}}2}}}} = {2^{3.\dfrac{1}{{3{{\log }_{{x^2}}}2}}}} = {2^{\dfrac{1}{{{{\log }_{{x^2}}}2}}}} = {2^{{{\log }_2}{x^2}}} = {x^2}\end{array}\)

Khi đó \(f\left( x \right) = {\left( {{x^2} + 2x + 1} \right)^{\dfrac{1}{2}}} - 1 = {\left( {{{\left( {x + 1} \right)}^2}} \right)^{\dfrac{1}{2}}} - 1 = x \Rightarrow f\left( x \right) = x\)

Do đó \(P = f\left( {f\left( {2018} \right)} \right) = f\left( {2018} \right) = 2018\).

Hướng dẫn giải:

Sử dụng các công thức biến đổi logarit \({\log _a}{a^n} = n;{\log _a}b = \dfrac{1}{{{{\log }_b}a}};{a^{{{\log }_a}b}} = b\)

Câu 17: Trắc nghiệm ID: 146075

Một người mua xe máy với giá 45 triệu đồng. Biết rằng giá trị khấu hao tài sản xe giảm 60% mỗi năm. Hỏi sau bao nhiêu năm thì giá trị xe chỉ còn 5 triệu đồng?

Xem đáp án
Đáp án đúng: b

Gọi số năm để xe có giá trị 5 triệu đồng là \(n\left( {n \in {N^*}} \right)\)

Sau \(n\) năm giá trị xe còn lại là: \({T_n} = {T_0}{\left( {1 - 60\% } \right)^n}\)  với \({T_n}\) là giá xe sau \(n\) năm, \({T_o}\) là giá xe ban đầu

Khi đó ta có:  \(5 = 45.0,{4^n} \Rightarrow 0,{4^n} = \dfrac{1}{9}\) nên \(n = {\log _{0,4}}\dfrac{1}{9} \approx 2,39\)

Vậy sau 2,5 năm giá trị xe chỉ còn 5 triệu đồng

Hướng dẫn giải:

Lập công thức tổng quát cho giá trị xe sau \(n\) năm. Từ đó tìm được \(n\).

Câu 18: Trắc nghiệm ID: 146076

Gọi \(m,M\) lần lượt là GTNN, GTLN của hàm số \(y = {e^{2 - 3x}}\) trên đoạn \(\left[ {0;2} \right]\). Mệnh đề nào sau đây đúng?

Xem đáp án
Đáp án đúng: c

Ta có: \(f'\left( x \right) =  - 3{e^{2 - 3x}} < 0,\forall x \in R\).

Do đó hàm số \(f\left( x \right)\) lên tục và nghịch biến trên \(\left[ {0;2} \right]\).

Do đó \(m = \mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 2 \right) = \dfrac{1}{{{e^4}}};M = \mathop {\max }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 0 \right) = {e^2} \Rightarrow M.m = \dfrac{1}{{{e^2}}}\) 

Hướng dẫn giải:

- Bước 1: Tính \(y'\), tìm các nghiệm \({x_1},{x_2},...,{x_n} \in \left[ {a;b} \right]\) của phương trình \(y' = 0\).

- Bước 2: Tính \(f\left( a \right),f\left( b \right),f\left( {{x_1}} \right),...,f\left( {{x_n}} \right)\).

- Bước 3: So sánh các giá trị vừa tính ở trên và kết luận GTLN, GTNN của hàm số.

+ GTNN \(m\) là số nhỏ nhất trong các giá trị tính được.

+ GTLN \(M\) là số lớn nhất trong các giá trị tính được.

Giải thích thêm:

Nhiều HS tính sai đạo hàm \(f'\left( x \right) = {e^{2 - 3x}}\) dẫn đến đánh giá hàm số đồng biến và tính sai hai giá trị \(M,m\) và chọn nhầm đáp án D là sai.

Câu 19: Trắc nghiệm ID: 146077

Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = \dfrac{{m\ln x - 2}}{{\ln x + m - 3}}\) đồng biến trên \(\left( {{e^2}; + \infty } \right)\) là

Xem đáp án
Đáp án đúng: c

Đặt \(t = \ln x,\,\,\,t \in \mathbb{R}.\) Hàm số đã cho trở thành \(y = \dfrac{{mt - 2}}{{t + m - 3}}\,\,\,\left( {t \ne 3 - m} \right)\) (1)

Xét hàm số \(t = \ln x\) với\(x \in \left( {{e^2}; + \infty } \right)\)ta có: \(t'\left( x \right) = \dfrac{1}{x} > 0\,\,\forall x \in \left( {{e^2}; + \infty } \right)\).

Do đó hàm số \(t = \ln x\) đồng biến trên khoảng \(\left( {{e^2}; + \infty } \right)\), do đó ta có: \(t \in \left( {2; + \infty } \right)\).

Yêu cầu bài toán trở thành : Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = f\left( t \right) = \dfrac{{mt - 2}}{{t + m - 3}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

Ta có: \(f'\left( t \right) = \dfrac{{m\left( {m - 3} \right) + 2}}{{{{\left( {t + m - 3} \right)}^2}}} = \dfrac{{{m^2} - 3m + 2}}{{{{\left( {t + m - 3} \right)}^2}}}.\)

Hàm số \(y = f\left( t \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) khi nó xác định trên khoảng \(\left( {2; + \infty } \right)\) đồng thời \(f'\left( t \right) \ge 0,\,\,\,\forall t \in \left( {2; + \infty } \right)\) (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).

Do đó, \(\left\{ \begin{array}{l}t \ne 3 - m\,\,\forall t \in \left( {2; + \infty } \right)\\{m^2} - 3m + 2 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3 - m \le 2\\\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\end{array} \right. \Leftrightarrow m > 2.\) 

Suy ra không có giá trị nguyên không dương nào của \(m\) thỏa mãn yêu cầu bài toán.

Hướng dẫn giải:

- Đặt ẩn phụ\(t = \ln x\), đưa hàm số về hàm số ẩn \(t\).

- Tìm điều kiện của ẩn phụ.

- Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {a;b} \right)\)  khi nó xác định và liên tục trên khoảng \(\left( {a;b} \right)\)  đồng thời\(f'\left( x \right) \ge 0,\forall x \in \left( {a;b} \right)\). (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).

- Tìm các giá trị nguyên không dương của \(m\) thỏa mãn.

Câu 20: Trắc nghiệm ID: 146078

Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).

Xem đáp án
Đáp án đúng: a

\(\begin{array}{l}{4.9^x} - {13.6^x} + {9.4^x} = 0 \Leftrightarrow 4 - 13.{\left( {\dfrac{2}{3}} \right)^x} + 9.{\left( {\dfrac{2}{3}} \right)^{2x}} = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^x} = 1\\{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{4}{9}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right. \Rightarrow T = 0 + 2 = 2\end{array}\)

Hướng dẫn giải:

- Chia cả hai vế cho $9^x$.

- Giải phương trình bậc hai ẩn ${\left( {\dfrac{2}{3}} \right)^x}$.

Giải thích thêm:

Các em cũng có thể đặt $t={\left( {\dfrac{2}{3}} \right)^x}$ để tiện trình bày, tránh nhầm lẫn khi tính toán.

Câu 21: Trắc nghiệm ID: 146079

Xét hệ phương trình  \(\left\{ \begin{array}{l}{2^x} - {2^y} = y - x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^2} + xy + {y^2} = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)có nghiệm \(\left( {x;y} \right)\). Khi đó phát biểu nào sau đây đúng:

Xem đáp án
Đáp án đúng: a

Ta có: \(\left( 1 \right) \Leftrightarrow {2^x} + x = {2^y} + y\,\,\,\,\,\,\,\,\left( * \right)\)                 

Xét hàm số \(f\left( t \right) = {2^t} + t\) trên \(\mathbb{R},\) ta có: \(f'\left( t \right) = {2^t}\ln 2 + 1 > 0,\,\forall t \in \mathbb{R}.\)

Vậy hàm số \(f\left( t \right)\) đồng biến trên \(\mathbb{R}.\)

Do đó: \(\left( * \right) \Leftrightarrow f\left( x \right) = f\left( y \right) \Leftrightarrow x = y.\)

Thay \(x = y\) vào (2) ta được: \(3{x^2} = 3 \Leftrightarrow {x^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 1\\x =  - 1 \Rightarrow y =  - 1\end{array} \right. \Rightarrow \left( {x;y} \right) = \left( {1;1} \right),\left( { - 1; - 1} \right).\)

Hướng dẫn giải:

Biến đổi phương trình \(\left( 1 \right)\) về dạng đặc biệt rồi dùng hàm đặc trưng giải phương trình.

Câu 22: Trắc nghiệm ID: 146080

Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}(x) > {\log _2}({x^2} - x) - 1$

Xem đáp án
Đáp án đúng: b

Thử giá trị  $x = 3:{\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}\left( x \right) - {\log _2}\left( {{x^2} - x} \right) + 1 < 0$: Loại đáp án A

Thử giá trị  $x = 2:{\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}\left( x \right) - {\log _2}\left( {{x^2} - x} \right) + 1 = 0$: Loại đáp án D

Thử giá trị $x = 0,5$: MATH ERROR: Loại đáp án C

Hướng dẫn giải:

Dùng máy tính thử một số giá trị để loại các đáp án

Giải thích thêm:

Cách khác: Các em có thể làm theo cách khác, biến đổi về logarit cơ số $2$ và giải bất phương trình.

Câu 23: Trắc nghiệm ID: 146081

Thầy C gửi \(5\) triệu đồng vào ngân hàng với lãi suất \(0,7\% \)/tháng. Chưa đầy một năm thì lãi suất tăng lên thành \(1,15\% \)/tháng. Tiếp theo, sáu tháng sau lãi suất chỉ còn \(0,9\% \)/tháng. Thầy C tiếp tục gửi thêm một số tháng nữa rồi rút cả vỗn lẫn lãi được 5787710,707 đồng. Hỏi thầy C đã gửi tổng thời gian bao nhiêu tháng?

Xem đáp án
Đáp án đúng: c

Gọi x: số tháng gửi với \(r = 0,7\% /\)tháng

y: số tháng gửi với \(r = 0,9\% /\)tháng

\( + )\) Tổng số tháng gửi tiết kiệm: \(x + 6 + y\) (tháng)

\( + )\) Theo đề bài ta có: \(\left[ {\left[ {5000000{{\left( {1 + 0,7\% } \right)}^x}} \right]{{\left( {1 + 1,15\% } \right)}^6}} \right]{\left( {1 + 0,9\% } \right)^y} = 5787710,707\)

\( \Leftrightarrow {\left( {1,007} \right)^x}.{\left( {1,009} \right)^y} = 1,080790424\)

\( \Leftrightarrow {\left( {1,009} \right)^y} = \dfrac{{1,080790424}}{{{{\left( {1,007} \right)}^x}}}\)

\( \Leftrightarrow y = {\log _{1,009}}\dfrac{{1,080790424}}{{{{\left( {1,007} \right)}^x}}} = f\left( x \right)\)

Nhập \(f\left( x \right)\) vào TABLE \(\left\{ \begin{array}{l}F\left( x \right) = {\log _{1,009}}\dfrac{{1,080790424}}{{{{\left( {1,007} \right)}^x}}}\\Start:1\\End:11\\Step:1\end{array} \right.\)

Khi đó bảng giá trị hiện ra x=6 thì y=3,9999.

\( + )\) Vì x, y nguyên \( \Rightarrow \)\(\left\{ \begin{array}{l}x = 6\\y = 4\end{array} \right.\)

\( \Rightarrow \) Số tháng gửi tiết kiệm là:

\(  6 + 6 + 4 = 16\) (tháng)

Giải thích thêm:

Để cho chính xác các em hãy làm như sau:

${\left( {1,007} \right)^x}.{\left( {1,009} \right)^y} = \frac{{5787710,707}}{{5000000.{{\left( {1,0115} \right)}^6}}}$

Gán giá trị $\frac{{5787710,707}}{{5000000.{{\left( {1,0115} \right)}^6}}} \to A$ (bấm SHIFT STO A) rồi nhập hàm $F\left( X \right) = {\log _{1,009}}\frac{A}{{{{\left( {1,007} \right)}^X}}}$

Sau đó thực hiện như phần lời giải sẽ ra kết quả (6;4) chính xác.

Câu 24: Trắc nghiệm ID: 146082

Cho \(x;y\) là hai số thực dương thỏa  mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).

Xem đáp án
Đáp án đúng: d

Ta có

\(\begin{array}{l}P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\\ \Leftrightarrow Pxy - P{y^2} = {x^2} + 3{y^2}\\ \Leftrightarrow \left( {P + 3} \right){y^2} - Pxy + {x^2} = 0\end{array}\)

Phương trình trên có nghiệm khi

\(\begin{array}{l}\Delta  = {P^2}{x^2} - 4\left( {P + 3} \right){x^2} \ge 0\\ \Leftrightarrow {P^2} - 4P - 12 \ge 0\\ \Rightarrow \left[ \begin{array}{l}P \ge 6\\P \le  - 2\end{array} \right. \Rightarrow MinP = 6\end{array}\)

Dấu bằng xáy ra khi \(\left\{ \begin{array}{l}y = \dfrac{{Px}}{{2\left( {P + 3} \right)}} = \dfrac{x}{3}\\\dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}} = 6\end{array} \right. \Rightarrow x = 3y\)

Dễ thấy \(x=3y\) thỏa mãn điều kiện bài cho vì:

$\begin{array}{l}
{\left( {{2^{3y}} + \frac{1}{{{2^{3y}}}}} \right)^y} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^{3y}}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^3}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {2^{3y}} + \frac{1}{{{2^{3y}}}} + {3.2^y}.\frac{1}{{{2^y}}}.\left( {{2^y} + \frac{1}{{{2^y}}}} \right)\\
\Leftrightarrow 0 < 3\left( {{2^y} + \frac{1}{{{2^y}}}} \right)
\end{array}$

Bđt trên luôn đúng với mọi \(y>0\).

Hướng dẫn giải:

Đưa biểu thức cần tìm giá trị nhỏ nhất về dạng phương trình bậc hai ẩn y.

Câu 25: Trắc nghiệm ID: 146083

Tìm tất cả các giá trị thực của tham số m để phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x} - 2} \right) = m\) có nghiệm \(x \ge 1\) ?

Xem đáp án
Đáp án đúng: b

ĐK: \({5^x} - 1 > 0 \Leftrightarrow {5^x} > 1 \Leftrightarrow x > 0\)

\(\begin{array}{l}{\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x} - 2} \right) = m\\ \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left[ {2\left( {{5^x} - 1} \right)} \right] = m\\ \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).\dfrac{1}{2}\left[ {{{\log }_2}2 + {{\log }_2}\left( {{5^x} - 1} \right)} \right] = m\\ \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) = 2m\end{array}\)

Đặt \(t = {\log _2}\left( {{5^x} - 1} \right)\), với \(x \ge 1\) ta có \({5^x} \ge 5 \Rightarrow {5^x} - 1 \ge 4 \Rightarrow {\log _2}\left( {{5^x} - 1} \right) \ge {\log _2}4 = 2\)

Khi đó phương trình trở thành \({t^2} + t = 2m\,\,\left( {t \ge 2} \right)\,\,\,\left( * \right)\). Để phương trình ban đầu có nghiệm \(x \ge 1\) khi và chỉ khi phương trình (*) có nghiệm \(t \ge 2\).

Xét hàm số \(f\left( t \right) = {t^2} + t\) trên \(\left[ {2; + \infty } \right)\), ta có \(f'\left( t \right) = 2t + 1 = 0 \Leftrightarrow t =  - \dfrac{1}{2}\). Lập BBT

Lời giải - Đề kiểm tra 1 tiết chương 2: Hàm số lũy thừa, mũ và logarit - Đề số 2 - ảnh 1

Dựa vào BBT ta thấy phương trình (*) có nghiệm \(t \ge 2\) khi và chỉ khi \(2m \ge 6 \Leftrightarrow m \ge 3 \Rightarrow m \in \left[ {3; + \infty } \right)\)

Hướng dẫn giải:

Đặt \(t = {\log _2}\left( {{5^x} - 1} \right)\) , tìm tập giá trị của t tương ứng với \(x \ge 1\).

Để phương trình về dạng \(f\left( t \right) = m\,\,\left( * \right)\), khi đó số nghiệm của phương trình (*) chính là số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = m song song với trục hoành.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »