Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Đặt \(t = \ln x,\,\,\,t \in \mathbb{R}.\) Hàm số đã cho trở thành \(y = \dfrac{{mt - 2}}{{t + m - 3}}\,\,\,\left( {t \ne 3 - m} \right)\) (1)
Xét hàm số \(t = \ln x\) với\(x \in \left( {{e^2}; + \infty } \right)\)ta có: \(t'\left( x \right) = \dfrac{1}{x} > 0\,\,\forall x \in \left( {{e^2}; + \infty } \right)\).
Do đó hàm số \(t = \ln x\) đồng biến trên khoảng \(\left( {{e^2}; + \infty } \right)\), do đó ta có: \(t \in \left( {2; + \infty } \right)\).
Yêu cầu bài toán trở thành : Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = f\left( t \right) = \dfrac{{mt - 2}}{{t + m - 3}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Ta có: \(f'\left( t \right) = \dfrac{{m\left( {m - 3} \right) + 2}}{{{{\left( {t + m - 3} \right)}^2}}} = \dfrac{{{m^2} - 3m + 2}}{{{{\left( {t + m - 3} \right)}^2}}}.\)
Hàm số \(y = f\left( t \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) khi nó xác định trên khoảng \(\left( {2; + \infty } \right)\) đồng thời \(f'\left( t \right) \ge 0,\,\,\,\forall t \in \left( {2; + \infty } \right)\) (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).
Do đó, \(\left\{ \begin{array}{l}t \ne 3 - m\,\,\forall t \in \left( {2; + \infty } \right)\\{m^2} - 3m + 2 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3 - m \le 2\\\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\end{array} \right. \Leftrightarrow m > 2.\)
Suy ra không có giá trị nguyên không dương nào của \(m\) thỏa mãn yêu cầu bài toán.
Hướng dẫn giải:
- Đặt ẩn phụ\(t = \ln x\), đưa hàm số về hàm số ẩn \(t\).
- Tìm điều kiện của ẩn phụ.
- Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {a;b} \right)\) khi nó xác định và liên tục trên khoảng \(\left( {a;b} \right)\) đồng thời\(f'\left( x \right) \ge 0,\forall x \in \left( {a;b} \right)\). (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).
- Tìm các giá trị nguyên không dương của \(m\) thỏa mãn.
Đặt \(t = \ln x,\,\,\,t \in \mathbb{R}.\) Hàm số đã cho trở thành \(y = \dfrac{{mt - 2}}{{t + m - 3}}\,\,\,\left( {t \ne 3 - m} \right)\) (1)
Xét hàm số \(t = \ln x\) với\(x \in \left( {{e^2}; + \infty } \right)\)ta có: \(t'\left( x \right) = \dfrac{1}{x} > 0\,\,\forall x \in \left( {{e^2}; + \infty } \right)\).
Do đó hàm số \(t = \ln x\) đồng biến trên khoảng \(\left( {{e^2}; + \infty } \right)\), do đó ta có: \(t \in \left( {2; + \infty } \right)\).
Yêu cầu bài toán trở thành : Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = f\left( t \right) = \dfrac{{mt - 2}}{{t + m - 3}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Ta có: \(f'\left( t \right) = \dfrac{{m\left( {m - 3} \right) + 2}}{{{{\left( {t + m - 3} \right)}^2}}} = \dfrac{{{m^2} - 3m + 2}}{{{{\left( {t + m - 3} \right)}^2}}}.\)
Hàm số \(y = f\left( t \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) khi nó xác định trên khoảng \(\left( {2; + \infty } \right)\) đồng thời \(f'\left( t \right) \ge 0,\,\,\,\forall t \in \left( {2; + \infty } \right)\) (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).
Do đó, \(\left\{ \begin{array}{l}t \ne 3 - m\,\,\forall t \in \left( {2; + \infty } \right)\\{m^2} - 3m + 2 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3 - m \le 2\\\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\end{array} \right. \Leftrightarrow m > 2.\)
Suy ra không có giá trị nguyên không dương nào của \(m\) thỏa mãn yêu cầu bài toán.
Hướng dẫn giải:
- Đặt ẩn phụ\(t = \ln x\), đưa hàm số về hàm số ẩn \(t\).
- Tìm điều kiện của ẩn phụ.
- Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {a;b} \right)\) khi nó xác định và liên tục trên khoảng \(\left( {a;b} \right)\) đồng thời\(f'\left( x \right) \ge 0,\forall x \in \left( {a;b} \right)\). (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).
- Tìm các giá trị nguyên không dương của \(m\) thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Một người mua xe máy với giá 45 triệu đồng. Biết rằng giá trị khấu hao tài sản xe giảm 60% mỗi năm. Hỏi sau bao nhiêu năm thì giá trị xe chỉ còn 5 triệu đồng?
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Cho \(x;y\) là hai số thực dương thỏa mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Tập xác định của hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) là:
Công thức nào sau đây là công thức tăng trưởng mũ?
Tính tổng \(T\) tất cả các nghiệm của phương trình \({\left( {x - 3} \right)^{2{x^2} - 5x}} = 1\).
Với \(a,\,b\) là các số thực dương bất kì, \({\log _2}\dfrac{a}{{{b^2}}}\) bằng:
Giá trị của $x$ thỏa mãn \({\log _{\frac{1}{2}}}(3 - x) = 2\) là
Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}(x) > {\log _2}({x^2} - x) - 1$
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Xét hệ phương trình \(\left\{ \begin{array}{l}{2^x} - {2^y} = y - x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^2} + xy + {y^2} = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)có nghiệm \(\left( {x;y} \right)\). Khi đó phát biểu nào sau đây đúng:
Cho các số \(a,\ b,\ c\) và \(a,\ c\ne 1\). Khẳng định nào sau đây đúng?