Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Hàm số \(y = {x^{ - 4}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\) và có \(y' = - 4{x^{ - 5}}\) nên không đồng biến trên các khoảng xác định (đồng biến trên \(\left( { - \infty ,0} \right)\) và nghịch biến trên \(\left( {0, + \infty } \right)\)), loại A.
Hàm số \(y = {x^{ - \dfrac{3}{4}}}\) có tập xác định là \(\left( {0, + \infty } \right)\) và có \(y' = - \dfrac{3}{4}{x^{ - \dfrac{7}{4}}} < 0,\forall x \in \left( {0, + \infty } \right)\) nên không đồng biến trên từng khoảng xác định, loại B.
Hàm số \(y = {x^4}\) có tập xác định là \(\mathbb{R}\) và có \(y' = 4{x^3}\) nên không đồng biến trên các khoảng xác định, loại C.
Hàm số \(y = \sqrt[3]{x}\) có tập xác định là \(\mathbb{R}\) và có \(y' = \dfrac{1}{{3\sqrt[3]{{{x^2}}}}} > 0\) nên hàm số đồng biến trên các khoảng xác định.
Hướng dẫn giải:
Tính đạo hàm của mỗi hàm số rồi xét dấu đạo hàm trên khoảng xác định \(D\).
Nếu \(y' \ge 0\) và bằng \(0\) tại hữu hạn điểm thuộc \(D\) thì hàm số đồng biến trên \(D\).
Hàm số \(y = {x^{ - 4}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\) và có \(y' = - 4{x^{ - 5}}\) nên không đồng biến trên các khoảng xác định (đồng biến trên \(\left( { - \infty ,0} \right)\) và nghịch biến trên \(\left( {0, + \infty } \right)\)), loại A.
Hàm số \(y = {x^{ - \dfrac{3}{4}}}\) có tập xác định là \(\left( {0, + \infty } \right)\) và có \(y' = - \dfrac{3}{4}{x^{ - \dfrac{7}{4}}} < 0,\forall x \in \left( {0, + \infty } \right)\) nên không đồng biến trên từng khoảng xác định, loại B.
Hàm số \(y = {x^4}\) có tập xác định là \(\mathbb{R}\) và có \(y' = 4{x^3}\) nên không đồng biến trên các khoảng xác định, loại C.
Hàm số \(y = \sqrt[3]{x}\) có tập xác định là \(\mathbb{R}\) và có \(y' = \dfrac{1}{{3\sqrt[3]{{{x^2}}}}} > 0\) nên hàm số đồng biến trên các khoảng xác định.
Hướng dẫn giải:
Tính đạo hàm của mỗi hàm số rồi xét dấu đạo hàm trên khoảng xác định \(D\).
Nếu \(y' \ge 0\) và bằng \(0\) tại hữu hạn điểm thuộc \(D\) thì hàm số đồng biến trên \(D\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Một người mua xe máy với giá 45 triệu đồng. Biết rằng giá trị khấu hao tài sản xe giảm 60% mỗi năm. Hỏi sau bao nhiêu năm thì giá trị xe chỉ còn 5 triệu đồng?
Tập xác định của hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) là:
Với \(a,\,b\) là các số thực dương bất kì, \({\log _2}\dfrac{a}{{{b^2}}}\) bằng:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({\left( {x - 3} \right)^{2{x^2} - 5x}} = 1\).
Cho \(x;y\) là hai số thực dương thỏa mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).
Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = \dfrac{{m\ln x - 2}}{{\ln x + m - 3}}\) đồng biến trên \(\left( {{e^2}; + \infty } \right)\) là
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Giá trị của $x$ thỏa mãn \({\log _{\frac{1}{2}}}(3 - x) = 2\) là
Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}(x) > {\log _2}({x^2} - x) - 1$
Cho hệ phương trình \(\left\{ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^{2x - y}} + 6{\left( {\dfrac{2}{3}} \right)^{\dfrac{{2x - y}}{2}}} - 7 = 0\\{3^{{{\log }_9}\left( {x - y} \right)}} = 1\end{array} \right.\). Chọn khẳng định đúng?
Xét hệ phương trình \(\left\{ \begin{array}{l}{2^x} - {2^y} = y - x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^2} + xy + {y^2} = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)có nghiệm \(\left( {x;y} \right)\). Khi đó phát biểu nào sau đây đúng: