Cho \(x;y\) là hai số thực dương thỏa mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).
A.
\(\min P = \dfrac{{13}}{2}.\)
B.
\(\min P = \dfrac{9}{2}.\)
C.
\(\min P = - 2.\)
D.
\(\min P = 6.\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có
\(\begin{array}{l}P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\\ \Leftrightarrow Pxy - P{y^2} = {x^2} + 3{y^2}\\ \Leftrightarrow \left( {P + 3} \right){y^2} - Pxy + {x^2} = 0\end{array}\)
Phương trình trên có nghiệm khi
\(\begin{array}{l}\Delta = {P^2}{x^2} - 4\left( {P + 3} \right){x^2} \ge 0\\ \Leftrightarrow {P^2} - 4P - 12 \ge 0\\ \Rightarrow \left[ \begin{array}{l}P \ge 6\\P \le - 2\end{array} \right. \Rightarrow MinP = 6\end{array}\)
Dấu bằng xáy ra khi \(\left\{ \begin{array}{l}y = \dfrac{{Px}}{{2\left( {P + 3} \right)}} = \dfrac{x}{3}\\\dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}} = 6\end{array} \right. \Rightarrow x = 3y\)
Dễ thấy \(x=3y\) thỏa mãn điều kiện bài cho vì:
$\begin{array}{l}
{\left( {{2^{3y}} + \frac{1}{{{2^{3y}}}}} \right)^y} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^{3y}}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^3}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {2^{3y}} + \frac{1}{{{2^{3y}}}} + {3.2^y}.\frac{1}{{{2^y}}}.\left( {{2^y} + \frac{1}{{{2^y}}}} \right)\\
\Leftrightarrow 0 < 3\left( {{2^y} + \frac{1}{{{2^y}}}} \right)
\end{array}$
Bđt trên luôn đúng với mọi \(y>0\).
Hướng dẫn giải:
Đưa biểu thức cần tìm giá trị nhỏ nhất về dạng phương trình bậc hai ẩn y.
Ta có
\(\begin{array}{l}P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\\ \Leftrightarrow Pxy - P{y^2} = {x^2} + 3{y^2}\\ \Leftrightarrow \left( {P + 3} \right){y^2} - Pxy + {x^2} = 0\end{array}\)
Phương trình trên có nghiệm khi
\(\begin{array}{l}\Delta = {P^2}{x^2} - 4\left( {P + 3} \right){x^2} \ge 0\\ \Leftrightarrow {P^2} - 4P - 12 \ge 0\\ \Rightarrow \left[ \begin{array}{l}P \ge 6\\P \le - 2\end{array} \right. \Rightarrow MinP = 6\end{array}\)
Dấu bằng xáy ra khi \(\left\{ \begin{array}{l}y = \dfrac{{Px}}{{2\left( {P + 3} \right)}} = \dfrac{x}{3}\\\dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}} = 6\end{array} \right. \Rightarrow x = 3y\)
Dễ thấy \(x=3y\) thỏa mãn điều kiện bài cho vì:
$\begin{array}{l}
{\left( {{2^{3y}} + \frac{1}{{{2^{3y}}}}} \right)^y} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^{3y}}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^3}\\
\Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {2^{3y}} + \frac{1}{{{2^{3y}}}} + {3.2^y}.\frac{1}{{{2^y}}}.\left( {{2^y} + \frac{1}{{{2^y}}}} \right)\\
\Leftrightarrow 0 < 3\left( {{2^y} + \frac{1}{{{2^y}}}} \right)
\end{array}$
Bđt trên luôn đúng với mọi \(y>0\).
Hướng dẫn giải:
Đưa biểu thức cần tìm giá trị nhỏ nhất về dạng phương trình bậc hai ẩn y.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Một người mua xe máy với giá 45 triệu đồng. Biết rằng giá trị khấu hao tài sản xe giảm 60% mỗi năm. Hỏi sau bao nhiêu năm thì giá trị xe chỉ còn 5 triệu đồng?
Tập xác định của hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) là:
Với \(a,\,b\) là các số thực dương bất kì, \({\log _2}\dfrac{a}{{{b^2}}}\) bằng:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({\left( {x - 3} \right)^{2{x^2} - 5x}} = 1\).
Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = \dfrac{{m\ln x - 2}}{{\ln x + m - 3}}\) đồng biến trên \(\left( {{e^2}; + \infty } \right)\) là
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Giá trị của $x$ thỏa mãn \({\log _{\frac{1}{2}}}(3 - x) = 2\) là
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}(x) > {\log _2}({x^2} - x) - 1$
Cho hệ phương trình \(\left\{ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^{2x - y}} + 6{\left( {\dfrac{2}{3}} \right)^{\dfrac{{2x - y}}{2}}} - 7 = 0\\{3^{{{\log }_9}\left( {x - y} \right)}} = 1\end{array} \right.\). Chọn khẳng định đúng?
Cho các số \(a,\ b,\ c\) và \(a,\ c\ne 1\). Khẳng định nào sau đây đúng?