Tìm tất cả các giá trị thực của tham số m để phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x} - 2} \right) = m\) có nghiệm \(x \ge 1\) ?
A.
\(m \in \left[ {2; + \infty } \right)\)
B.
\(m \in \left[ {3; + \infty } \right)\)
C.
\(m \in \left( { - \infty ;2} \right]\)
D.
\(m \in \left( { - \infty ;3} \right]\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
ĐK: \({5^x} - 1 > 0 \Leftrightarrow {5^x} > 1 \Leftrightarrow x > 0\)
\(\begin{array}{l}{\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x} - 2} \right) = m\\ \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left[ {2\left( {{5^x} - 1} \right)} \right] = m\\ \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).\dfrac{1}{2}\left[ {{{\log }_2}2 + {{\log }_2}\left( {{5^x} - 1} \right)} \right] = m\\ \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) = 2m\end{array}\)
Đặt \(t = {\log _2}\left( {{5^x} - 1} \right)\), với \(x \ge 1\) ta có \({5^x} \ge 5 \Rightarrow {5^x} - 1 \ge 4 \Rightarrow {\log _2}\left( {{5^x} - 1} \right) \ge {\log _2}4 = 2\)
Khi đó phương trình trở thành \({t^2} + t = 2m\,\,\left( {t \ge 2} \right)\,\,\,\left( * \right)\). Để phương trình ban đầu có nghiệm \(x \ge 1\) khi và chỉ khi phương trình (*) có nghiệm \(t \ge 2\).
Xét hàm số \(f\left( t \right) = {t^2} + t\) trên \(\left[ {2; + \infty } \right)\), ta có \(f'\left( t \right) = 2t + 1 = 0 \Leftrightarrow t = - \dfrac{1}{2}\). Lập BBT

Dựa vào BBT ta thấy phương trình (*) có nghiệm \(t \ge 2\) khi và chỉ khi \(2m \ge 6 \Leftrightarrow m \ge 3 \Rightarrow m \in \left[ {3; + \infty } \right)\)
Hướng dẫn giải:
Đặt \(t = {\log _2}\left( {{5^x} - 1} \right)\) , tìm tập giá trị của t tương ứng với \(x \ge 1\).
Để phương trình về dạng \(f\left( t \right) = m\,\,\left( * \right)\), khi đó số nghiệm của phương trình (*) chính là số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = m song song với trục hoành.
ĐK: \({5^x} - 1 > 0 \Leftrightarrow {5^x} > 1 \Leftrightarrow x > 0\)
\(\begin{array}{l}{\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x} - 2} \right) = m\\ \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _{{2^2}}}\left[ {2\left( {{5^x} - 1} \right)} \right] = m\\ \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).\dfrac{1}{2}\left[ {{{\log }_2}2 + {{\log }_2}\left( {{5^x} - 1} \right)} \right] = m\\ \Leftrightarrow \log _2^2\left( {{5^x} - 1} \right) + {\log _2}\left( {{5^x} - 1} \right) = 2m\end{array}\)
Đặt \(t = {\log _2}\left( {{5^x} - 1} \right)\), với \(x \ge 1\) ta có \({5^x} \ge 5 \Rightarrow {5^x} - 1 \ge 4 \Rightarrow {\log _2}\left( {{5^x} - 1} \right) \ge {\log _2}4 = 2\)
Khi đó phương trình trở thành \({t^2} + t = 2m\,\,\left( {t \ge 2} \right)\,\,\,\left( * \right)\). Để phương trình ban đầu có nghiệm \(x \ge 1\) khi và chỉ khi phương trình (*) có nghiệm \(t \ge 2\).
Xét hàm số \(f\left( t \right) = {t^2} + t\) trên \(\left[ {2; + \infty } \right)\), ta có \(f'\left( t \right) = 2t + 1 = 0 \Leftrightarrow t = - \dfrac{1}{2}\). Lập BBT
Dựa vào BBT ta thấy phương trình (*) có nghiệm \(t \ge 2\) khi và chỉ khi \(2m \ge 6 \Leftrightarrow m \ge 3 \Rightarrow m \in \left[ {3; + \infty } \right)\)
Hướng dẫn giải:
Đặt \(t = {\log _2}\left( {{5^x} - 1} \right)\) , tìm tập giá trị của t tương ứng với \(x \ge 1\).
Để phương trình về dạng \(f\left( t \right) = m\,\,\left( * \right)\), khi đó số nghiệm của phương trình (*) chính là số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = m song song với trục hoành.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Một người mua xe máy với giá 45 triệu đồng. Biết rằng giá trị khấu hao tài sản xe giảm 60% mỗi năm. Hỏi sau bao nhiêu năm thì giá trị xe chỉ còn 5 triệu đồng?
Với \(a,\,b\) là các số thực dương bất kì, \({\log _2}\dfrac{a}{{{b^2}}}\) bằng:
Tập xác định của hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({\left( {x - 3} \right)^{2{x^2} - 5x}} = 1\).
Cho \(x;y\) là hai số thực dương thỏa mãn \(x \ne y\) và \({\left( {{2^x} + \dfrac{1}{{{2^x}}}} \right)^y} < {\left( {{2^y} + \dfrac{1}{{{2^y}}}} \right)^x}.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\).
Tìm số các giá trị nguyên không dương của tham số \(m\) để hàm số \(y = \dfrac{{m\ln x - 2}}{{\ln x + m - 3}}\) đồng biến trên \(\left( {{e^2}; + \infty } \right)\) là
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Giá trị của $x$ thỏa mãn \({\log _{\frac{1}{2}}}(3 - x) = 2\) là
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}(x) > {\log _2}({x^2} - x) - 1$
Cho hệ phương trình \(\left\{ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^{2x - y}} + 6{\left( {\dfrac{2}{3}} \right)^{\dfrac{{2x - y}}{2}}} - 7 = 0\\{3^{{{\log }_9}\left( {x - y} \right)}} = 1\end{array} \right.\). Chọn khẳng định đúng?