Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1

  • Hocon247

  • 25 câu hỏi

  • 45 phút

  • 615 lượt thi

  • Dễ

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 145923

Cho hàm số $y = f\left( x \right)$ xác định trên $R\backslash \left\{ { - 1;\,1} \right\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng $y = 2m + 1$ cắt đồ thị hàm số $y = f\left( x \right)$ tại hai điểm phân biệt.

Xem đáp án
Đáp án đúng: c

Quan sát BBT ta thấy đường thẳng $y = 2m + 1$ cắt đồ thị hàm số $y = f\left( x \right)$ tại hai điểm phân biệt $ \Leftrightarrow \left[ \begin{gathered}2m + 1 <  - 3 \hfill \\  2m + 1 > 3 \hfill \\ \end{gathered}  \right. \Leftrightarrow \left[ \begin{gathered}  m <  - 2 \hfill \\  m > 1 \hfill \\ \end{gathered}  \right.$ .

Hướng dẫn giải:

- Biện luận số nghiệm của phương trình dựa vào số giao điểm của đường thẳng và đường cong vừa vẽ được.

Giải thích thêm:

Đường thẳng \(y =  - 3\) chỉ cắt đồ thị hàm số \(y = f\left( x \right)\) tại duy nhất 1 điểm \({x_0} \in \left( {0;1} \right)\) nên không thỏa mãn bài toán

(ở nhánh bên trái thì \(y =  - 3\) không cắt đồ thị vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - 3\), các em có thể hiểu là \(f\left( x \right) =  - 3\) thì \(x =  - \infty \) nên coi như không có \(x\))

Đường thẳng \(y = 3\) chỉ cắt đồ thị hàm số \(y = f\left( x \right)\) tại duy nhất 1 điểm \({x_1} \in \left( { - 1;0} \right)\) nên không thỏa mãn bài toán

(ở nhánh bên phải thì \(y = 3\) không cắt đồ thị vì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 3\), các em có thể hiểu là \(f\left( x \right) = 3\) thì \(x =  + \infty \) nên coi như không có \(x\))

Câu 2: Trắc nghiệm ID: 145924

Hàm số nào dưới đây không có cực trị?

Xem đáp án
Đáp án đúng: a

Dễ thấy hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) là hàm phân thức bậc nhất trên bậc nhất nên không có cực trị.

Ngoài ra, có thể kiểm tra được các cực trị của mỗi hàm số được cho ở ba đáp án B, C, D.

Hướng dẫn giải:

Hàm phân thức bậc nhất trên bậc nhất \(y = \dfrac{{ax + b}}{{cx + d}}\) không có cực trị.

Câu 3: Trắc nghiệm ID: 145925

Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$

Xem đáp án
Đáp án đúng: a

+) Xét đáp án A:$y = \sin x - 3x$ có: $y' = \cos x - 3.$

Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \cos x \le 1 \Rightarrow y' = {\rm{cosx\;}} - 3 < 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu}  \in R \Rightarrow $ hàm số nghịch biến trên $R.$

Vậy hàm số ở đáp án A không đồng biến trên $R$.

+) Xét đáp án B: $y = \cos x + 2x$ có: $y' = {\rm{\;}} - \sin x + 2.$

Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \sin x \le 1 \Rightarrow y' = {\rm{\;}} - \sin x + 2 > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu}  \in R$

Vậy hàm số đồng biến trên $\mathbb{R}.$

+) Xét đáp án C: $y'=3x^2\ge 0, \forall x$ nên hàm số đồng biến trên $R$.

+) Xét đáp án D: $y'=5x^4\ge 0, \forall x$ nên hàm số đồng biến trên $R$.

Vậy chỉ có hàm số ở đáp án A không đồng biến trên $R$.

Hướng dẫn giải:

+) Xét các hàm số theo từng đáp án.

+) Hàm số nào có $y' \ge 0$ với mọi $x \in R$ thì hàm số đó đồng biến trên R.

Câu 4: Trắc nghiệm ID: 145926

Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Bảng biến thiên trên là bảng biến thiên của hàm số nào?

Xem đáp án
Đáp án đúng: c

Nhận xét: Dễ thấy bảng biến thiên của đồ thị hàm số bậc 3 nên loại đáp án B.

Ngoài cùng bên phải của $y< 0 \Rightarrow a < 0$ nên loại đáp án A.

Thay lần lượt hai điểm $\left( {0;\, - 1} \right)$ và $\left( {2;\,3} \right)$ vào 2 hàm số còn lại.

Thay $x = 0$ vào cả hai  hàm số $y =  - {x^3} + 3{x^2} - 1$ và $y =  - {x^3} - 3{x^2} - 1$ ta thu được $y =  - 1$ $ \Rightarrow \left( {0;\, - 1} \right)$ đều thuộc vào 2 đồ thị hàm số $y =  - {x^3} + 3{x^2} - 1$ và $y =  - {x^3} - 3{x^2} - 1$

Thay $x = 2$ vào hàm số $y =  - {x^3} + 3{x^2} - 1$ ta được $ y = 3 \Rightarrow \left( {2;\,3} \right)$ thuộc vào đồ thị hàm số $y =  - {x^3} + 3{x^2} - 1$.

Thay $x = 2$ vào hàm số $y =  - {x^3} - 3{x^2} - 1$ ta được $y =  - 21$ $ \Rightarrow \left( {2;\,3} \right)$ không thuộc vào đồ thị hàm số $y =  - {x^3} - 3{x^2} - 1$.

Hướng dẫn giải:

- Nhận xét dáng đồ thị suy ra hàm bậc ba và hệ số $a$.

- Tìm điểm đi qua và thay vào các đáp án.

Câu 5: Trắc nghiệm ID: 145927

Tìm tất cả các giá trị của tham số $m$ để hàm số $y = {x^3} - 2m{x^2} + {m^2}x + 2$ đạt cực tiểu tại $x=1$.

Xem đáp án
Đáp án đúng: d

TXĐ: $D = R$

Ta có: $y' = 3{x^2} - 4mx + {m^2} \Rightarrow y'' = 6x - 4m$

Để $x = 1$ là điểm cực tiểu của hàm số  thì:

$\left\{ \begin{gathered}y'\left( 1 \right) = 0 \hfill \\y''\left( 1 \right) > 0 \hfill \\ \end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - 4m + 3 = 0 \hfill \\ 6 - 4m > 0 \hfill \\ \end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}m = 1;m = 3 \hfill \\m < \dfrac{3}{2} \hfill \\ \end{gathered}  \right. \Leftrightarrow m = 1.$

Hướng dẫn giải:

- Bước 1: Tính $y',y''$.

- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:

+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\  f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered}  \right.$ 

+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$

- Bước 3: Kết luận.

Giải thích thêm:

Nhiều HS sẽ nhầm lẫn điều kiện để điểm ${x_0}$ là điểm cực tiểu là $f''\left( {{x_0}} \right) < 0$ dẫn đến chọn đáp án $m = 3$ là sai.

Câu 6: Trắc nghiệm ID: 145928

Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì

Xem đáp án
Đáp án đúng: b

Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thì ${x_0}$ là điểm cực tiểu của hàm số.

Hướng dẫn giải:

Nếu $\left\{ \begin{gathered}f'\left( x \right) < 0,\forall x \in \left( {{x_0} - h} \right) \hfill \\f'\left( x \right) > 0,\forall x \in \left( {{x_0} + h} \right) \hfill \\ \end{gathered}  \right.$  thì ${x_0}$ là một điểm cực tiểu của hàm số.

Giải thích thêm:

Một số em có thể chọn nhầm đáp án D vì không phân biệt được khái niệm điểm cực tiểu của hàm số và điểm cực tiểu của đồ thị hàm số.

Câu 7: Trắc nghiệm ID: 145929

Các đồ thị hàm số $y = {x^4} - 2{x^2} + 2$$y =  - {x^2} + 4$ có tất cả bao nhiêu điểm chung?

Xem đáp án
Đáp án đúng: d

Phương trình hoành độ giao điểm của hai đồ thị hàm số đã cho là:

$\begin{gathered}{x^4} - 2{x^2} + 2 =  - {x^2} + 4 \Leftrightarrow {x^4} - {x^2} - 2 = 0 \hfill \\   \Leftrightarrow \left[ \begin{gathered}  {x^2} =  - 1 < 0(L) \hfill \\  {x^2} = 2 \hfill \\ \end{gathered}  \right. \Leftrightarrow x =  \pm \sqrt 2  \hfill \\ \end{gathered} $

Như vậy hai đồ thị có $2$ giao điểm. 

Hướng dẫn giải:

- Xét phương trình hoành độ giao điểm của hai đồ thị hàm số.

- Giải phương trình tìm nghiệm và kết luận.

Giải thích thêm:

Khi giải phương trình bậc bốn trùng phương ta có thể đặt $t=x^2$ với điều kiện $t \ge 0$

Câu 8: Trắc nghiệm ID: 145930

Cho hàm số $f\left( x \right)$ xác định trên $\left[ {0;2} \right]$ và có GTNN trên đoạn đó bằng $5$. Chọn kết luận đúng:

Xem đáp án
Đáp án đúng: b

GTNN của $f\left( x \right)$ trên $\left[ {0;2} \right]$ bằng $5$ nên $f\left( x \right) \geqslant 5,\forall x \in \left[ {0;2} \right] \Rightarrow f\left( 2 \right) \geqslant 5$.

Câu 9: Trắc nghiệm ID: 145931

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Khẳng định nào sau đây là khẳng định đúng:

Xem đáp án
Đáp án đúng: c

A, B sai vì hàm số chỉ nghịch biến trên các khoảng $\left( { - \infty ; - 2} \right)$$\left( {0;2} \right)$

D sai vì hàm số chỉ đồng biến trên khoảng $\left( { - 2;0} \right)$$\left( {2; + \infty } \right)$

C đúng vì giá trị thấp nhất của y trên bảng biến thiên là 0.

Hướng dẫn giải:

Quan sát bảng biến thiên và nhận xét các khoảng đồng biến, nghịch biến của hàm số và rút ra kết luận.

Định lý: Cho hàm số $y = f\left( x \right)$ xác định và có đạo hàm trên $K$.

a) Nếu $f'\left( x \right) > 0,\forall x \in K$ thì hàm số $y = f\left( x \right)$ đồng biến trên $K$.

b) Nếu $f'\left( x \right) < 0,\forall x \in K$ thì hàm số $y = f\left( x \right)$ nghịch biến trên $K$.

Giải thích thêm:

Học sinh quan sát thấy chiều mũi tên đi lên từ $0$ đến $3$ chọn đáp án D là sai.

Một số em nhìn nhầm đáp án C thành $f'(x)\ge 0$ và kết luận không có đáp án đúng là sai, ở đây $f(x) \ge 0$ nghĩa là giá trị của hàm số luôn không âm (quan sát bảng biến thiên). Các em cần chú ý đọc kĩ đề bài.

Câu 10: Trắc nghiệm ID: 145932

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sin x$ trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ lần lượt là

Xem đáp án
Đáp án đúng: b

Ta có $y' = \cos x \Rightarrow y' = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)$

Do $x\in \left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ nên $k=-1$ hay $x=-\dfrac{\pi }{2}$

Suy ra $y\left( { - \dfrac{\pi }{2}} \right) =  - 1;\;\;y\left( { - \dfrac{\pi }{3}} \right) =  - \dfrac{{\sqrt 3 }}{2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\rm{\;}}&{\mathop {\max}\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]}y =  - \dfrac{{\sqrt 3 }}{2}}\\{{\rm{ \;}}}&{\mathop {\min }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y =  - 1}\end{array}} \right.$

Hướng dẫn giải:

+) Tính đạo hàm y' và giải phương trình $y' = 0$ tìm các nghiệm ${x_i}.$

+) Tìm giá trị lớn nhất của hàm số $y = f\left( x \right)$ trên đoạn $\left[ {a;\;b} \right],$ ta tính các giá trị $y\left( a \right);\;y\left( {{x_i}} \right);\;\;y\left( b \right)$ và đưa ra kết luận đúng.

Giải thích thêm:

Các em có thể nhận xét ngay hàm số \(y = \sin x\) đồng biến trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$, từ đó tìm được GTLN, GTNN của hàm số.

Câu 11: Trắc nghiệm ID: 145933

Hàm số $y = f\left( x \right) = a{x^3} + b{x^2} + cx + d$ có đồ thị như hình vẽ, chọn kết luận đúng:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1
Xem đáp án
Đáp án đúng: a

Quan sát đồ thị ta thấy $\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty $ nên $a > 0$.

Câu 12: Trắc nghiệm ID: 145934

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án
Đáp án đúng: b

Đáp án A: Hàm số đạt cực đại tại $x = 0$ và $y = 3$ là giá trị cực đại của hàm số nên A sai.

Đáp án B: GTNN và giá trị cực tiểu của hàm số là $y = 0$ nên B đúng và C sai.

Đáp án D: Hàm số không có GTLN vì $\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty $.

Hướng dẫn giải:

Xét tính đúng, sai của từng đáp án. Sử dụng các định nghĩa GTLN, GTNN, giá trị cực đại, giá trị cực tiểu của hàm số.

Giải thích thêm:

HS thường nhầm lần giữa GTLN với GTCĐ, GTNN với GTCT nên cần phân biệt rõ ràng mối quan hệ giữa các giá trị này.

Câu 13: Trắc nghiệm ID: 145935

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên trên khoảng $\left( {0;2} \right)$ như sau:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Khẳng định nào sau đây là khẳng định đúng:

Xem đáp án
Đáp án đúng: b

A sai vì trên đoạn $\left( {0;2} \right)$ vẫn có cực trị tại $x = 1$.

Hàm số đạt cực đại tại $x=1$ nên B đúng.

C sai vì hàm số đạt cực đại tại $x = 1$ không phải cực tiểu

D sai vì đạo hàm không đổi dấu qua $x = 0$ 

Hướng dẫn giải:

Quan sát bảng biến thiên và rút ra nhận xét dựa trên các khái niệm cực đại, cực tiểu.

Giải thích thêm:

Nhiều HS nhầm lẫn rằng hàm số không có đạo hàm tại $x = 1$ nên kết luận hàm số không có cực trị và chọn ngay đáp án A.

Điều này là sai vì vẫn có những điểm mà hàm số đạt cực trị nhưng không có đạo hàm tại điểm đó.

Chẳng hạn hàm số $y = \left| x \right|$ không có đạo hàm tại $x = 0$ nhưng $x = 0$ vẫn là điểm cực tiểu của hàm số.

Câu 14: Trắc nghiệm ID: 145936

Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(R\). Chọn kết luận đúng:

Xem đáp án
Đáp án đúng: a

Đáp án A: Nếu \(f'\left( x \right) > 0,\forall x \in R\) thì hàm số \(y = f\left( x \right)\) đồng biến trên \(R\) nên A đúng.

Đáp án B: Nếu \(f'\left( x \right) < 0,\forall x \in R\) thì hàm số nghịch biến trên \(R\) nên B sai.

Đáp án C, D: Nếu \(f'\left( x \right) = 0,\forall x \in R\) thì hàm số không đổi trên \(R\) nên C, D sai.

Hướng dẫn giải:

Sử dụng định lý: “Nếu \(f'\left( x \right) > 0,\forall x \in K\) thì hàm số \(y = f\left( x \right)\) đồng biến trên \(K\)”.

Câu 15: Trắc nghiệm ID: 145937

Cho hàm số \(y = \dfrac{{2018}}{{x - 2}}\) có đồ thị \(\left( H \right).\) Số đường tiệm cận của \(\left( H \right)\) là:

Xem đáp án
Đáp án đúng: a

Ta có \(\mathop {\lim }\limits_{x{\kern 1pt}  \to {\kern 1pt} \infty } y = \mathop {\lim }\limits_{x{\kern 1pt}  \to {\kern 1pt} \infty } \dfrac{{2018}}{{x - 2}} = 0 \Rightarrow {\mkern 1mu} {\mkern 1mu} y = 0\) là tiệm cận ngang của đồ thị hàm số.

Và \(\mathop {\lim }\limits_{x{\kern 1pt}  \to {\kern 1pt} 2} y = \mathop {\lim }\limits_{x{\kern 1pt}  \to {\kern 1pt} 2} \dfrac{{2018}}{{x - 2}} = \infty {\rm{\;}} \Rightarrow {\mkern 1mu} {\mkern 1mu} x = 2\) là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có \(2\) đường tiệm cận.

Hướng dẫn giải:

Dựa vào định nghĩa tính giới hạn tìm tiệm cận của đồ thị hàm số

+) Nếu \(\mathop {\lim }\limits_{x \to \infty } y = a \Rightarrow y = a\) là TCN của đồ thị hàm số.

+) Nếu \(\mathop {\lim }\limits_{x \to {x_0}} y = \infty {\rm{\;}} \Rightarrow x = {x_0}\) là TCĐ của đồ thị hàm số.

Câu 16: Trắc nghiệm ID: 145938

Hàm số $y =  - {x^4} - 2{x^2} + 3$ nghịch biến trên:

Xem đáp án
Đáp án đúng: d

TXĐ: $R$.

Ta có:

\(y'=-4x^3-4x=-4x(x^2+1)\)

\(\Rightarrow y' = 0 \Leftrightarrow x = 0\)

Ta có bảng biến thiên

Lời giải - Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Từ bảng biến thiên ta thấy hàm nghịch biến trên khoảng $\left( {0; + \infty } \right)$.

Hướng dẫn giải:

- Bước 1: Tìm TXĐ của hàm số.

- Bước 2: Tính đạo hàm $f'\left( x \right)$, tìm các điểm ${x_1},{x_2},...,{x_n}$ mà tại đó đạo hàm bằng $0$ hoặc không xác định.

- Bước 3: Xét dấu đạo hàm và nêu kết luận về khoảng đồng biến, nghịch biến của hàm số.

+ Các khoảng mà $f'\left( x \right) > 0$ là các khoảng đồng biến của hàm số.

+ Các khoảng mà $f'\left( x \right) < 0$ là các khoảng nghịch biến của hàm số.

Câu 17: Trắc nghiệm ID: 145939

Cho hàm số $y = {x^4} - 2m{x^2} + 3m + 2.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác đều là:

Xem đáp án
Đáp án đúng: a

\(\begin{array}{l}y' = 4{x^3} - 4mx\\y' = 0 \Leftrightarrow 4{x^3} - 4mx = 0 \Leftrightarrow 4x\left( {{x^2} - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \sqrt m \,\, (1)\end{array} \right.\end{array}\)

Hàm số \(y=f(x)\) có 3 cực trị

\( \Leftrightarrow y' = 0\) có 3 nghiệm phân biệt

\( \Leftrightarrow (1){\rm{\;}}\) có 2 nghiệm phân biệt khác 0

\( \Leftrightarrow \) \(m > 0\).

Gọi 3 điểm cực trị của hàm số lần lượt là \(A(0;a);B(-\sqrt m;b);C(\sqrt m;c)\). Khi đó:

\(\begin{array}{*{20}{l}}
{ + )x = 0 \Rightarrow A\left( {0;3m + 2} \right)}\\
{ + )x = - \sqrt m {\rm{\;}} \Rightarrow y = {{\left( { - \sqrt m } \right)}^4} - 2m.{{\left( { - \sqrt m } \right)}^2} + 3m + 2}\\
{ = {m^2} - 2{m^2} + 3m + 2}\\
{ = {\rm{\;}} - {m^2} + 3m + 2 \Rightarrow B\left( { - \sqrt m ; - {m^2} + 3m + 2} \right)}\\
{ + )x = \sqrt m {\rm{\;}} \Rightarrow y=- {m^2} + 3m + 2\\ \Rightarrow C\left( {\sqrt m ; - {m^2} + 3m + 2} \right)}
\end{array}\)

Ta luôn có $AB=AC$ nên tam giác $ABC$ đều

\(\begin{array}{l} \Leftrightarrow AB = BC \Leftrightarrow A{B^2} = B{C^2}\\ \Leftrightarrow {\left( { - \sqrt m } \right)^2} + {\left( { - {m^2}} \right)^2} = {\left( {2\sqrt m } \right)^2} + {0^2}\\ \Leftrightarrow m + {m^4} = 4m\\ \Leftrightarrow {m^4} - 3m = 0\\ \Leftrightarrow m\left( {{m^3} - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = \sqrt[3]{3}\end{array} \right.\end{array}\) 

Kết hợp điều kiện \(m > 0 \Rightarrow m = \sqrt[3]{3}\)

Hướng dẫn giải:

- Bước 1: Tính $y'$. Điều kiện để hàm số có 3 điểm cực trị là phương trình y'=0 có 3 nghiệm phân biệt

- Bước 2: Tìm tọa độ ba điểm cực trị đó. Giả sử ba điểm cực trị lần lượt là $A,B,C$ trong đó $A\left( {0;c} \right)$ (Hàm bậc bốn trùng phương luôn có một điểm cực trị có hoành độ bằng 0). Khi đó tam giác ABC đều $ \Leftrightarrow AB = BC =CA$

- Bước 3: Kết luận.

Giải thích thêm:

Có thể dung công thức giải nhanh: Đồ thị hàm số $y = a{x^4} + b{x^2} + c(a \ne 0)$ có $3$ cực trị tạo thành tam giác đều  nếu $\left\{ \begin{gathered}ab < 0 \hfill \\ {b^3} =  - 24a \hfill \\ \end{gathered}  \right.$ 

Câu 18: Trắc nghiệm ID: 145940

Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$

Xem đáp án
Đáp án đúng: c

$y' = 3{x^2} - 10x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}x = 3 \in \left[ {2;4} \right] \hfill \\x = \dfrac{1}{3} \notin \left[ {2;4} \right] \hfill \\ \end{gathered}  \right.$

$f\left( 2 \right) =  - 7,f\left( 3 \right) =  - 10,f\left( 4 \right) =  - 5$

Vậy giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$$M =  - 5$

Hướng dẫn giải:

- Bước 1: Tính $y'$, giải phương trình $y' = 0$ tìm các nghiệm ${x_1},{x_2},...{x_n}$ thỏa mãn $a \leqslant {x_1} < {x_2}< ... < {x_n} \leqslant b$.

- Bước 2: Tính các giá trị $f\left( a \right),f\left( {{x_1}} \right),...,f\left( {{x_n}} \right),f\left( b \right)$.

- Bước 3: So sánh các giá trị tính được ở trên và kết luận:

+ Giá trị lớn nhất tìm được trong số các giá trị ở trên là GTLN $M$ của hàm số trên $\left[ {a;b} \right]$.

+ Giá trị nhỏ nhất tìm được trong số các giá trị ở trên là GTNN $m$ của hàm số trên $\left[ {a;b} \right]$.

Câu 19: Trắc nghiệm ID: 145941

Đồ thị hàm số $y = \dfrac{x}{{\sqrt {{x^2} - 1} }}$ có bao nhiêu đường tiệm cận ngang:

Xem đáp án
Đáp án đúng: c

$\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} $ $= \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 - \dfrac{1}{{{x^2}}}} }} = 1$

$ \Rightarrow y = 1$ là đường tiệm cận ngang của đồ thị hàm số

$\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} $ $= \mathop {\lim }\limits_{x \to  - \infty } \dfrac{x}{{ - x\sqrt {1 - \dfrac{1}{{{x^2}}}} }} =  - 1$

$ \Rightarrow y =  - 1$ là đường tiệm cận ngang của đồ thị hàm số

Hướng dẫn giải:

- Bước 1: Tính cả hai giới hạn$\mathop {\lim }\limits_{x \to  + \infty } y$$\mathop {\lim }\limits_{x \to  - \infty } y$.

- Bước 2: Kết luận:

Đường thẳng $y = {y_0}$ được gọi là tiệm cận ngang của đồ thị hàm số $y = f\left( x \right)$ nếu nó thỏa mãn một trong 2 điều kiện sau: $\left[ \begin{gathered}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0} \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } y = {y_0} \hfill \\ \end{gathered}  \right.$

Giải thích thêm:

HS thường bỏ quên trường hợp tính giới hạn của hàm số khi $x \to  - \infty $, hoặc tính sai giới hạn $\mathop {\lim }\limits_{x \to  - \infty } y = 1$ dẫn đến chọn đáp án B là sai.

Câu 20: Trắc nghiệm ID: 145942

Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Liệt kê tất cả các dạng có thể biểu diễn đồ thị hàm số \(y = {x^3} + b{x^2} - x + d\).

Xem đáp án
Đáp án đúng: a

Hàm số \(y = {x^3} + b{x^2} - x + d\) có hệ số của \({x^3}\) dương nên loại (II).

Xét \(y' = 3{x^2} + 2bx - 1\) có \(\Delta ' = {b^2} + 3 > 0,\forall b \in \mathbb{R}\).

Do đó hàm số có hai cực trị.

Hướng dẫn giải:

Nhận xét hệ số \(a\) của hàm số suy ra dáng đồ thị, tính \(y'\) suy ra số cực trị và kết luận.

Câu 21: Trắc nghiệm ID: 145943

Đồ thị hàm số $y = \dfrac{{ax + 2}}{{cx + b}}$ như hình vẽ bên. 

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1

Chọn khẳng định đúng:

Xem đáp án
Đáp án đúng: d

Ta có đồ thị hàm số$y = \dfrac{{ax + 2}}{{cx + b}}$ đi qua điểm có tọa độ $\left( {0; - 1} \right)$

Thay $x = 0;\,y =  - 1$ vào hàm số ta được $ - 1 = \dfrac{{a.0 + 2}}{{c.0 + b}} \Rightarrow b =  - 2$

Đồ thị hàm số $y = \dfrac{{ax + 2}}{{cx - 2}}$

$\left\{ \begin{align} & \xrightarrow{TCD}x=\dfrac{2}{c}=2\Rightarrow c=1 \\  & \xrightarrow{TCN}y=\dfrac{a}{c}=\dfrac{a}{1}=1\Rightarrow a=1 \\ \end{align} \right.$ $\Rightarrow a=1;\,b=-2;\,c=1$

Hướng dẫn giải:

- Quan sát đồ thị, tìm các điểm đi qua của đồ thị hàm số.

- Tìm các tiệm cận đứng, ngang của đồ thị hàm số.

Giải thích thêm:

Học sinh có thể nhầm lẫn trong việc tính $b=2$ dẫn đến chọn đáp án C là sai.

Câu 22: Trắc nghiệm ID: 145944

Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y =  - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.

Xem đáp án
Đáp án đúng: b

Ta có: \(y' = \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\)

Xét phương trình hoành độ giao điểm của đường thẳng $d$ đã cho và $\left( H \right)$.

$\begin{array}{l} - 2x + m = \dfrac{{2x + 3}}{{x + 2}}\\ \Leftrightarrow \left( {x + 2} \right)\left( { - 2x + m} \right) = 2x + 3\\ \Leftrightarrow  - 2{x^2} + \left( {m - 4} \right)x + 2m = 2x + 3\\ \Leftrightarrow 2{x^2} + \left( {6 - m} \right)x + 3 - 2m = 0{\rm{ }}\left( * \right)\end{array}$

$d$ cắt $\left( H \right)$ tại 2 điểm phân biệt $ \Leftrightarrow $ Phương trình (*) có $2$  nghiệm phân biệt khác \( - 2\)

$ \Leftrightarrow \left\{ \begin{array}{l}\Delta  = {\left( {6 - m} \right)^2} - 8\left( {3 - 2m} \right) > 0\\2.{\left( { - 2} \right)^2} + \left( {6 - m} \right).\left( { - 2} \right) + 3 - 2m \ne 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 12 > 0\\ - 1 \ne 0\end{array} \right.$

(luôn đúng)

Gọi hoành độ giao điểm hai điểm \(A,B\) lần lượt là \({x_1},{x_2}\), khi đó:\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{m - 6}}{2}\\{x_1}{x_2} = \dfrac{{3 - 2m}}{2}\end{array} \right.\)

Ta có:

\({k_1}.{k_2} = \dfrac{1}{{{{\left( {{x_1} + 2} \right)}^2}}}.\dfrac{1}{{{{\left( {{x_2} + 2} \right)}^2}}} = \dfrac{1}{{{{\left[ {\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right)} \right]}^2}}}\)

\( = \dfrac{1}{{{{\left[ {{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4} \right]}^2}}} = \dfrac{1}{{{{\left[ {\dfrac{{3 - 2m}}{2} + 2.\dfrac{{m - 6}}{2} + 4} \right]}^2}}}\)

\( = \dfrac{1}{{{{\left( {\dfrac{{3 - 2m + 2m - 12 + 8}}{2}} \right)}^2}}} = 4\)

Khi đó \(P = k_1^{2018} + k_2^{2018} \ge 2{\left| {{k_1}{k_2}} \right|^{1009}} = {2.4^{1009}} = {2^{2019}}\).

Dấu “=” xảy ra khi \({k_1} = {k_2} = 2\) hay hai tiếp tuyến tại hai giao điểm song song.

Điều này chỉ xảy ra khi hai giao điểm này đối xứng với nhau qua tâm đối xứng \(I\) của đồ thị \(\left( H \right)\) hay \(d\) đi qua \(I\left( { - 2;2} \right)\) là giao điểm hai đường tiệm cận của đồ thị hàm số.

\( \Leftrightarrow I \in d \Leftrightarrow 2 = -2.\left( {-2} \right) + m \Leftrightarrow m = -2\)

Hướng dẫn giải:

+ Tính \(y'\).

+ Tìm điều kiện để đường thẳng $d$  cắt $\left( H \right)$ tại 2 điểm phân biệt.

+ Đánh giá và tìm GTNN của biểu thức \(P = k_1^{2018} + k_2^{2018}\) sử dụng bất đẳng thức Cô-si với \({k_1},{k_2}\) là hệ số góc của tiếp tuyến tại hai giao điểm của hai đồ thị hàm số.

+ Tìm điều kiện để $d$ đi qua giao điểm $I$ của $2$ đường tiệm cận của $\left( H \right)$.

Câu 23: Trắc nghiệm ID: 145945

Cho $(C)$ là đồ thị hàm số $y = \dfrac{{x + 1}}{{x - 2}}$. Tìm các điểm trên $(C)$ sao cho tổng khoảng cách từ điểm đó đến 2 tiệm cận là nhỏ nhất:

Xem đáp án
Đáp án đúng: b

Gọi $M\left( {m;\dfrac{{m + 1}}{{m - 2}}} \right) \in \left( C \right)\,\left( {m \ne 2} \right)$. Tổng khoảng cách từ M đến 2 đường tiệm cận $x = 2 $ và $y = 1$ là

$S = \left| {m - 2} \right| + \left| {\dfrac{{m + 1}}{{m - 2}} - 1} \right| = \left| {m - 2} \right| + \dfrac{3}{{\left| {m - 2} \right|}} \geqslant 2\sqrt {\left| {m - 2} \right|.\dfrac{3}{{\left| {m - 2} \right|}}}  = 2\sqrt 3 $

Dấu “=” xảy ra $ \Leftrightarrow \left| {m - 2} \right| = \dfrac{3}{{\left| {m - 2} \right|}} \Leftrightarrow \left| {m - 2} \right| = \sqrt 3  \Leftrightarrow m = 2 \pm \sqrt 3 $

Vậy có 2 điểm thỏa mãn bài toán là ${M_1}\left( {2 + \sqrt 3 ;1 + \sqrt 3 } \right),{M_2}\left( {2 - \sqrt 3 ;1 - \sqrt 3 } \right)$

Hướng dẫn giải:

- Gọi điểm $M$ có tọa độ thỏa mãn phương trình hàm số.

- Tìm phương trình hai đường tiệm cận của đồ thị hàm số.

- Sử dụng công thức tính khoảng cách để tính tổng khoảng cách của điểm $M$ đến hai tiệm cận.

- Tìm GTNN của biểu thức ở trên, từ đó suy ra $m$.

Câu 24: Trắc nghiệm ID: 145946

Cho các số thực $x, y$ thỏa mãn ${\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} + 2xy \leqslant 32.$ Giá trị nhỏ nhất $m$ của biểu thức $A = {x^3} + {y^3} + 3\left( {xy - 1} \right)\left( {x + y - 2} \right)$ là:

Xem đáp án
Đáp án đúng: c

${\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} + 2xy \leqslant 32 $ $\Leftrightarrow {\left( {x + y} \right)^2} - 8\left( {x + y} \right) \leqslant 0 $ $\Leftrightarrow 0 \leqslant x + y \leqslant 8$

$A = {\left( {x + y} \right)^3} - 3\left( {x + y} \right) - 6xy + 6 $ $\geqslant {\left( {x + y} \right)^3} - \dfrac{3}{2}{\left( {x + y} \right)^2} - 3\left( {x + y} \right) + 6$

(do ${\left( {x + y} \right)^2} \geqslant 4xy $ $\Rightarrow xy \leqslant \dfrac{{{{\left( {x + y} \right)}^2}}}{4} $ $\Rightarrow  - 6xy \geqslant  - \dfrac{3}{2}{\left( {x + y} \right)^2}$ )

Xét hàm số $f\left( t \right) = {t^3} - \dfrac{3}{2}{t^2} - 3t + 6$ trên đoạn $\left[ {0,8} \right]$, ta có

$f'\left( t \right) = 3{t^2} - 3t - 3,f'\left( t \right) = 0 $ $\Leftrightarrow t = \dfrac{{1 \pm \sqrt 5 }}{2}$

(giá trị $\dfrac{{1 - \sqrt 5 }}{2} \notin \left[ {0;8} \right]$ nên loại)

Thực hiện tính toán ta có: $f\left( 0 \right) = 6,f\left( {\dfrac{{1 + \sqrt 5 }}{2}} \right) = \dfrac{{17 - 5\sqrt 5 }}{4},f\left( 8 \right) = 398 $

$\Rightarrow A \geqslant f\left( t \right) \geqslant \dfrac{{17 - 5\sqrt 5 }}{4} \Rightarrow A \geqslant \dfrac{{17 - 5\sqrt 5 }}{4}$

Vậy giá trị nhỏ nhất của $A$ là $\dfrac{{17 - 5\sqrt 5 }}{4}$  xảy ra khi $\left\{ \begin{gathered} x + y = \dfrac{{1 + \sqrt 5 }}{2} \hfill \\ x = y \hfill \\ \end{gathered}  \right. \Leftrightarrow x = y = \dfrac{{1 + \sqrt 5 }}{4}$

Hướng dẫn giải:

Giải bất phương trình ${\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} + 2xy \leqslant 32$ với ẩn $x + y$ để tìm điều kiện của $x + y$.

Biến đổi biểu thức $A$ thành đa thức bậc ba ẩn $x + y$, đặt ẩn phụ $t = x + y$ rồi xét hàm số, chú ý điều kiện $x + y$ tìm được ở trên.

Giải thích thêm:

Khi biến đổi biểu thức $A$ phải sử dụng linh hoạt bất đẳng thức cơ bản $xy \leqslant \dfrac{{{{\left( {x + y} \right)}^2}}}{4}$ để đánh giá $A$.

Ngoài ra tại bước tìm $\max ,\min $ của $f\left( t \right)$ nhiều HS sẽ kết luận  $A \geqslant \mathop {\max }\limits_{\left[ {0;8} \right]} f\left( t \right) = 398$ dẫn đến kết luận sai, chọn nhầm Đáp án D.

Câu 25: Trắc nghiệm ID: 145947

Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 1 - ảnh 1
Xem đáp án
Đáp án đúng: b

Từ đồ thị ta thấy $(C_1)$ là đồ thị của hàm bậc bốn; $(C_2)$ là đồ thị của hàm bậc ba; $\left( {{C_3}} \right)$là đồ thị hàm bậc hai (parabol) nên $(C_1)$ là đồ thị của $f(x)$; $\left( {{C_2}} \right)$ là đồ thị của $f'\left( x \right)$; $\left( {{C_3}} \right)$ là đồ thị của $f''\left( x \right)$ 

Hướng dẫn giải:

Sau mỗi lần đạo hàm hàm đa thức thì bậc của hàm số giảm đi $1$ đơn vị.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »