Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
TXĐ: $D = R$
Ta có: $y' = 3{x^2} - 4mx + {m^2} \Rightarrow y'' = 6x - 4m$
Để $x = 1$ là điểm cực tiểu của hàm số thì:
$\left\{ \begin{gathered}y'\left( 1 \right) = 0 \hfill \\y''\left( 1 \right) > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {m^2} - 4m + 3 = 0 \hfill \\ 6 - 4m > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered}m = 1;m = 3 \hfill \\m < \dfrac{3}{2} \hfill \\ \end{gathered} \right. \Leftrightarrow m = 1.$
Hướng dẫn giải:
- Bước 1: Tính $y',y''$.
- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:
+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered} \right.$
+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$
- Bước 3: Kết luận.
Giải thích thêm:
Nhiều HS sẽ nhầm lẫn điều kiện để điểm ${x_0}$ là điểm cực tiểu là $f''\left( {{x_0}} \right) < 0$ dẫn đến chọn đáp án $m = 3$ là sai.
TXĐ: $D = R$
Ta có: $y' = 3{x^2} - 4mx + {m^2} \Rightarrow y'' = 6x - 4m$
Để $x = 1$ là điểm cực tiểu của hàm số thì:
$\left\{ \begin{gathered}y'\left( 1 \right) = 0 \hfill \\y''\left( 1 \right) > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {m^2} - 4m + 3 = 0 \hfill \\ 6 - 4m > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered}m = 1;m = 3 \hfill \\m < \dfrac{3}{2} \hfill \\ \end{gathered} \right. \Leftrightarrow m = 1.$
Hướng dẫn giải:
- Bước 1: Tính $y',y''$.
- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:
+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered} \right.$
+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$
- Bước 3: Kết luận.
Giải thích thêm:
Nhiều HS sẽ nhầm lẫn điều kiện để điểm ${x_0}$ là điểm cực tiểu là $f''\left( {{x_0}} \right) < 0$ dẫn đến chọn đáp án $m = 3$ là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sin x$ trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ lần lượt là
Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y = - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.
Cho hàm số $y = f\left( x \right)$ xác định trên $R\backslash \left\{ { - 1;\,1} \right\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng $y = 2m + 1$ cắt đồ thị hàm số $y = f\left( x \right)$ tại hai điểm phân biệt.
Cho hàm số $y = {x^4} - 2m{x^2} + 3m + 2.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác đều là:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên trên khoảng $\left( {0;2} \right)$ như sau:

Khẳng định nào sau đây là khẳng định đúng:
Hàm số $y = - {x^4} - 2{x^2} + 3$ nghịch biến trên:
Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$
Cho $(C)$ là đồ thị hàm số $y = \dfrac{{x + 1}}{{x - 2}}$. Tìm các điểm trên $(C)$ sao cho tổng khoảng cách từ điểm đó đến 2 tiệm cận là nhỏ nhất:
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Đồ thị hàm số $y = \dfrac{{ax + 2}}{{cx + b}}$ như hình vẽ bên.

Chọn khẳng định đúng:
Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:
Liệt kê tất cả các dạng có thể biểu diễn đồ thị hàm số \(y = {x^3} + b{x^2} - x + d\).