Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3

  • Hocon247

  • 25 câu hỏi

  • 45 phút

  • 612 lượt thi

  • Dễ

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 145973

Hệ số góc của tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^4}}}{4} + \dfrac{{{x^2}}}{2} - 1$ tại điểm có hoành độ $x =  - 1$ là:

Xem đáp án
Đáp án đúng: c

Ta có $y' = {x^3} + x$

$ \Rightarrow $ Hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ $x=-1$ là $k = y'( - 1) =  - 2$ 

Hướng dẫn giải:

Hệ số góc của tiếp tuyến của đồ thị hàm số $y = f\left( x \right)$ tại điểm có hoành độ $x = {x_0}$ là $k = f'\left( {{x_0}} \right)$.

Câu 2: Trắc nghiệm ID: 145974

Cho hàm số $f\left( x \right)$ xác định và có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right) < 0,\forall x \in \left( {a;b} \right)$ thì:

Xem đáp án
Đáp án đúng: b

Sử dụng định lý về xét tính đồng biến, nghịch biến của hàm số trên một khoảng đã nêu ở phần phương pháp, ở đây khoảng $K=(a;b)$ ta được:

Hàm số $y = f\left( x \right)$ xác định và có đạo hàm $f'\left( x \right) < 0,\forall x \in \left( {a;b} \right)$ thì $f\left( x \right)$ nghịch biến trên $\left( {a;b} \right)$.

Hướng dẫn giải:

Sử dụng định lý:

Định lý: Cho hàm số $y = f\left( x \right)$ xác định và có đạo hàm trên $K$.

a) Nếu $f'\left( x \right) > 0,\forall x \in K$ thì hàm số $y = f\left( x \right)$ đồng biến trên $K$.

b) Nếu $f'\left( x \right) < 0,\forall x \in K$ thì hàm số $y = f\left( x \right)$ nghịch biến trên $K$.

Câu 3: Trắc nghiệm ID: 145975

Số cực trị của hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) là:

Xem đáp án
Đáp án đúng: a

Hàm phân thức bậc nhất trên bậc nhất không có cực trị.

Câu 4: Trắc nghiệm ID: 145976

Giá trị lớn nhất của hàm số $f\left( x \right) = \dfrac{{\sin x}}{x}$ trên đoạn $\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]$ là:

Xem đáp án
Đáp án đúng: b

TXĐ: $x \ne 0$.

$f'\left( x \right) = \dfrac{{x\cos x - \sin x}}{{{x^2}}} < 0 \forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]$

Thật vậy,

Xét hàm \(g\left( x \right) = x\cos x - \sin x\) trên \(\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\) có:

\(g'\left( x \right) = \cos x - x\sin x - \cos x\) \( =  - x\sin x < 0,\forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\)

Do đó hàm số \(g\left( x \right)\) nghịch biến trên \(\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\).

Suy ra \(g\left( x \right) \le g\left( {\dfrac{\pi }{6}} \right)\) \( = \dfrac{\pi }{6}.\cos \dfrac{\pi }{6} - \sin \dfrac{\pi }{6} < 0\) hay \(x\cos x - \sin x < 0\) với \(\forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\)

$ \Rightarrow \mathop {\max }\limits_{\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]} f\left( x \right) = f\left( {\dfrac{\pi }{6}} \right) = \dfrac{3}{\pi }$.

Hướng dẫn giải:

Sử dụng phương pháp tìm GTLN, GTNN của hàm số:

- Tính \(y'\) và tìm các nghiệm của \(y' = 0\).

- Tính giá trị hàm số tại các điểm đặc biệt và kết luận.

Câu 5: Trắc nghiệm ID: 145977

Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$  có cực đại và cực tiểu.

Xem đáp án
Đáp án đúng: b

TXĐ: $D = R$

TH1: $m = 0 \to y = x - 1.$

Hàm số không có cực trị.

TH2: $m \ne 0$.

Ta có: $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ $ \Rightarrow y' = m{x^2} - 2mx + 1.$

Để hàm số cho có cực đại, cực tiểu thì phương trình $y' = 0$ phải có $2$ nghiệm phân biệt

$ \Rightarrow \Delta ' = {m^2} - m > 0 \Leftrightarrow \left[ \begin{gathered} m < 0 \hfill \\ m > 1 \hfill \\\end{gathered}  \right..$

Hướng dẫn giải:

- Bước 1: Tính $y'$.

- Bước 2: Hàm số có cực đại và cực tiểu $ \Leftrightarrow y' = 0$ có hai nghiệm phân biệt $ \Leftrightarrow \Delta  > 0$.

- Bước 3: Kết luận.

Giải thích thêm:

Học sinh cần nhớ xét trường hợp $m=0$ khi hệ số trước $x$ có mũ cao nhất chứa tham số.

Câu 6: Trắc nghiệm ID: 145978

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?

Xem đáp án
Đáp án đúng: d

Quan sát đồ thị hàm số ta thấy:

+) Với \(m < 3\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại \(3\) điểm phân biệt.

+) Với \(m = 3\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại \(2\) điểm phân biệt.

+) Với \(m > 3\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại  duy nhất \(1\) điểm.

Vậy đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại nhiều nhất \(3\) điểm.

Do đó phương trình đã cho có nhiều nhất \(3\) nghiệm.

Hướng dẫn giải:

Số nghiệm của phương trình bằng số giao điểm của đường thẳng \(y = m\) với đồ thị hàm số \(y = f\left( x \right)\).

Câu 7: Trắc nghiệm ID: 145979

Giả sử $y = f\left( x \right)$ có đạo hàm cấp hai trên $\left( {a;b} \right)$. Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$ thì 

Xem đáp án
Đáp án đúng: a

Nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\\end{gathered}  \right.$ thì ${x_0}$ là một điểm cực tiểu của hàm số.

Hướng dẫn giải:

a) Nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$ thì ${x_0}$ là một điểm cực tiểu của hàm số.

b) Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\\end{gathered}  \right.$ thì ${x_0}$ là một điểm cực đại của hàm số.

Câu 8: Trắc nghiệm ID: 145980

Cho hàm số $y = a{x^4} + b{x^2} + c$ có bảng biến thiên như hình vẽ. Chọn kết luận đúng:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1
Xem đáp án
Đáp án đúng: c

Từ bảng biến thiên ta thấy $\mathop {\lim }\limits_{x \to  \pm \infty } y =  - \infty $ nên $a < 0$.

Câu 9: Trắc nghiệm ID: 145981

Tập xác định của hàm số $y = - \dfrac{1}{2}{x^3} + 2x - 1$ là:

Xem đáp án
Đáp án đúng: a

Hàm đa thức bậc ba xác định trên $R$.

Câu 10: Trắc nghiệm ID: 145982

Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a < 0} \right)\) có \(3\) cực trị. Nếu \({y_{CT}} > 0\) thì:

Xem đáp án
Đáp án đúng: c

Dễ thấy hàm số bậc bốn trùng phương có cực đại, cực tiểu thì \({y_{CT}} < {y_{CD}}\) nên nếu \({y_{CT}} > 0\) thì \({y_{CD}} > 0\).

Câu 11: Trắc nghiệm ID: 145983

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1
Xem đáp án
Đáp án đúng: d

A đúng vì đồ thị hàm số có đường tiệm cận đứng là \(x = 1\)

B đúng vì hàm số luôn đồng biến nên không có cực trị

C đúng vì đồ thị hàm số có đường tiệm cận ngang \(y = 2\)

D sai vì hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) chứ không đồng biến trên toàn bộ tập số thực \(\mathbb{R}\)

Hướng dẫn giải:

Quan sát bảng biến thiên và tìm các đường tiệm cận của đồ thị hàm số, các khoảng đồng biến, nghịch biến của hàm số.

Câu 12: Trắc nghiệm ID: 145984

Hàm số $y = f\left( x \right) = a{x^3} + b{x^2} + cx + d$ có đồ thị như hình vẽ, chọn kết luận đúng:

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1
Xem đáp án
Đáp án đúng: a

Quan sát đồ thị ta thấy $\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty $ nên $a > 0$.

Câu 13: Trắc nghiệm ID: 145985

Nếu $\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty $ thì đường thẳng $x = {x_0}$ là:

Xem đáp án
Đáp án đúng: b

Nếu $\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty $ thì đường thẳng $x = {x_0}$ là tiệm cận đứng của đồ thị hàm số.

Câu 14: Trắc nghiệm ID: 145986

Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1
Xem đáp án
Đáp án đúng: d

Dựa vào BBT và các phương án lựa chọn, ta thấy:

Đây là dạng hàm số trùng phương có hệ số $a < 0$. Loại A và C.

Mặt khác, đồ thị hàm số đi qua điểm \(\left( {0;2} \right)\) nên loại B.

Hướng dẫn giải:

Quan sát bảng biến thiên, nhận xét hệ số \(a,b,c\) và kết luận.

Câu 15: Trắc nghiệm ID: 145987

Đề thi THPT QG - 2021 - mã 102

Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) là đường thẳng có phương trình                               

Xem đáp án
Đáp án đúng: c

Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) là đường thẳng có phương trình \(x = 2\)

Hướng dẫn giải:

Tiệm cận đứng của đồ thị hàm phân thức bậc nhất \(y = \dfrac{{ax + b}}{{cx + d}}\)\(x =  - \dfrac{d}{c}\)

Câu 16: Trắc nghiệm ID: 145988

Cho hàm số \(f\left( x \right) = \dfrac{{ax - 1}}{{bx + c}}\,\left( {a,b,c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:

Khẳng định nào dưới đây đúng?

Xem đáp án
Đáp án đúng: a

TXĐ: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).

Dựa vào BBT, ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  \pm \infty } f\left( x \right) = \dfrac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) =  + \infty ,\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) =  - \infty \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\dfrac{a}{b} = \dfrac{1}{2}\\ - \dfrac{c}{b} = 3\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = \dfrac{b}{2}\\c =  - 3b\end{array} \right.\)

Ta có: \(f\left( x \right) = \dfrac{{ax - 1}}{{bx + c}}\, \Rightarrow f'\left( x \right) = \dfrac{{ac + b}}{{{{\left( {bx + c} \right)}^2}}}\).

Dựa vào BBT ta thấy \(f'\left( x \right) < 0\,\,\,\forall x \ne 3 \Leftrightarrow ac + b < 0\,\,\forall x \ne 3\)\( \Leftrightarrow \dfrac{b}{2}.\left( { - 3b} \right) + b < 0 \Leftrightarrow \left[ \begin{array}{l}b < 0\\b > \dfrac{2}{3}\end{array} \right.\).

Hướng dẫn giải:

- Đồ thị hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\,\,\left( {ad \ne bc} \right)\) có đường tiệm cận ngang \(y = \dfrac{a}{c}\), tiệm cận đứng \(x =  - \dfrac{d}{c}\). Từ đó biểu diễn ac theo b.

- Dựa vào chiều biến thiên của đồ thị hàm số, suy ra 1 bất phương trình ẩn b và giải bất phương trình.

Câu 17: Trắc nghiệm ID: 145989

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in \mathbb{R}\). Có bao nhiêu số nguyên \(m\) thuộc đoạn \(\left[ { - 2019;\,2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;\, - 1} \right)\)?

Xem đáp án
Đáp án đúng: c

Ta có:

\(g'\left( x \right)  = \left[ {f\left( {1 - x} \right)} \right]' = \left( {1 - x} \right)'f'\left( {1 - x} \right)=  - f'\left( {1 - x} \right)\)

\(=  - {\left( {1 - x} \right)^2}\left( {1 - x - 2} \right)\left[ {{{\left( {1 - x} \right)}^2} - 6\left( {1 - x} \right) + m} \right]\) \( =  - {\left( {1 - x} \right)^2}\left( { - 1 - x} \right)\left( {{x^2} + 4x + m - 5} \right) = {\left( {x - 1} \right)^2}\left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right)\)

Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - \infty ; - 1} \right)\)

\( \Leftrightarrow g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\)

\( \Leftrightarrow {x^2} + 4x + m - 5 \ge 0,\forall x \in \left( { - \infty ; - 1} \right)\) (do \(x + 1 < 0,\forall x \in \left( { - \infty ; - 1} \right)\))

\( \Leftrightarrow h\left( x \right) = {x^2} + 4x - 5 \ge  - m\,\,\forall x \in \left( { - \infty ; - 1} \right)\)

\(\Leftrightarrow  - m \le \mathop {\min }\limits_{\left( { - \infty ; - 1} \right]} h\left( x \right)\).

Ta có \(h'\left( x \right) = 2x + 4 = 0 \Leftrightarrow x =  - 2\).

BBT:

Lời giải - Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1

Dựa vào BBT ta có \( - m \le  - 9 \Leftrightarrow m \ge 9\).

Mà \(m \in \left[ { - 2019;2019} \right]\) và \(m\) nguyên nên \(m \in \left[ {9;10;11;...;2019} \right]\) hay có \(2019 - 9 + 1 = 2011\) giá trị của \(m\) thỏa mãn.

Hướng dẫn giải:

Hàm số nghịch biến trên \(\left( { - \infty ; - 1} \right)\) nếu \(g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\).

Câu 18: Trắc nghiệm ID: 145990

Số điểm cực trị của hàm số $y = {(x - 1)^{2017}}$ là

Xem đáp án
Đáp án đúng: a

Tập xác định: $D = \mathbb{R}$

$y = {(x - 1)^{2017}} \Rightarrow y' = 2017{(x - 1)^{2016}} \ge 0,\forall x$

Do đó hàm số đồng biến trên $\mathbb{R}$ nên không có cực trị.

Hướng dẫn giải:

- Tính  và tìm các nghiệm của $y' = 0$ và các điểm tại đó hàm số không xác định.

- Xét dấu y’ qua các điểm tìm được ở trên và kết luận:

Điểm làm cho đạo hàm đổi dấu là các điểm cực trị của hàm số.

Câu 19: Trắc nghiệm ID: 145991

Đồ thị hàm số bên là đồ thị của hàm số $y = {x^4} - 4{x^2} + 1\left( C \right).$ Tìm $m$ để phương trình ${x^4} - 4{x^2} + 1 - m = 0$ có $4$ nghiệm phân biệt 

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1
Xem đáp án
Đáp án đúng: d

${x^4} - 4{x^2} + 1 - m = 0 \Leftrightarrow {x^4} - 4{x^2} + 1 = m$

Số nghiệm của phương trình ${x^4} - 4{x^2} + 1 - m = 0$ là số giao điểm của đồ thị hàm số $y = {x^4} - 4{x^2} + 1$ và đường thẳng $y = m$.

Þ Để phương trình ${x^4} - 4{x^2} + 1 - m = 0$ có $4$ nghiệm phân biệt $ \Leftrightarrow  - 3 < m < 1$

Lời giải - Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1

Hướng dẫn giải:

Quan sát đồ thị hàm số và nhận xét: Số nghiệm của phương trình là số giao điểm của đường thẳng với đồ thị hàm số

Câu 20: Trắc nghiệm ID: 145992

Đồ thị hàm số \(y = \dfrac{{ax + 2}}{{cx + b}}\) như hình vẽ bên.

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1

Chọn khẳng định đúng

Xem đáp án
Đáp án đúng: d

Ta có đồ thị hàm số\(y = \dfrac{{ax + 2}}{{cx + b}}\) đi qua điểm có tọa độ \(\left( {0; - 1} \right)\).

Thay \(x = 0;\,y =  - 1\) vào hàm số ta được \( - 1 = \dfrac{{a.0 + 2}}{{c.0 + b}} \Rightarrow b =  - 2\)

Đồ thị hàm số \(y = \dfrac{{ax + 2}}{{cx - 2}}\) có \( \Rightarrow a = 1;\,b =  - 2;\,c = 1\)

Hướng dẫn giải:

- Quan sát đồ thị, tìm các điểm đi qua của đồ thị hàm số.

- Tìm các tiệm cận đứng, ngang của đồ thị hàm số.

Câu 21: Trắc nghiệm ID: 145993

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right) = {\log _2}m\) có hai nghiệm phân biệt.

Đề kiểm tra 1 tiết chương 1: Hàm số - Đề số 3 - ảnh 1
Xem đáp án
Đáp án đúng: b

Phương trình \(f\left( x \right) = {\log _2}m\) có hai nghiệm phân biệt \( \Leftrightarrow \) đường thẳng \(y = {\log _2}m\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt \( \Leftrightarrow \left[ \begin{array}{l}{\log _2}m = 4\\{\log _2}m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = {2^4}\\0 < m < {2^0}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 16\\0 < m < 1\end{array} \right.\).

Hướng dẫn giải:

Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = {\log _2}m\).

Giải thích thêm:

Các em thường quên điều kiện \(m > 0\) dẫn đến chọn nhầm đáp án C là sai

Câu 22: Trắc nghiệm ID: 145994

Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{4x - 3}}{{2x + 1}}\) cùng với hai tiệm cận tạo thành một tam giác có diện tích bằng

Xem đáp án
Đáp án đúng: c

Chọn \(M\left( { - 1;7} \right)\) thuộc đồ thị hàm số

Có \(y' = \dfrac{{10}}{{{{\left( {2x + 1} \right)}^2}}};y'\left( { - 1} \right) = 10\)

Phương trình tiếp tuyến tại \(M\) : \(y = 10\left( {x + 1} \right) + 7 \Leftrightarrow y = 10x + 17\)

Phương trình các tiệm cận: \(x =  - \dfrac{1}{2};y = 2\)

Tam giác \(IAB\) vuông tại \(I\) tạo bởi \(3\)  đường trên có \(3\)  đỉnh: \(I = \left( { - \dfrac{1}{2};2} \right);A\left( { - \dfrac{1}{2};12} \right);B\left( { - \dfrac{3}{2};2} \right)\) và có diện tích: \(S = \dfrac{1}{2}IA.IB = \dfrac{1}{2}.10.1 = 5\)

Hướng dẫn giải:

+ Chọn 1 điểm thuộc đồ thị hàm số \(y = f\left( x \right)\)

+ Viết phương trình tiếp tuyến

+ Tính diện tích tam giác cần tìm

Câu 23: Trắc nghiệm ID: 145995

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên:

Giá trị nguyên lớn nhất của tham số m để hàm số \(y = f\left( {\left| x \right| - m} \right)\) đồng biến trên khoảng \(\left( {10; + \infty } \right)\) là:

Xem đáp án
Đáp án đúng: c

Ta có \(y = f\left( {\left| x \right| - m} \right) = f\left( {\sqrt {{x^2}}  - m} \right)\).

\( \Rightarrow y' = \dfrac{{2x}}{{2\sqrt {{x^2}} }}f'\left( {\sqrt {x^2} - m } \right) = \dfrac{x}{{\sqrt {{x^2}} }}f'\left( {\sqrt {x^2} - m } \right)\).

Để hàm số đồng biến trên \(\left( {10; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\).

\( \Rightarrow \dfrac{x}{{\sqrt {x^2} }}f'\left( {\sqrt {x^2} - m } \right) \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\) \( \Rightarrow f'\left( {\sqrt {x^2} - m}  \right) \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\,\,\left( * \right)\).

Dựa vào đồ thị hàm số ta thấy hàm số đồng biến trên \(\left( {1; + \infty } \right)\) và \(\left( { - \infty ; - 1} \right)\).

Do đó \(\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\sqrt {{x^2}}  - m \ge 1\,\,\forall x \in \left( {10; + \infty } \right)\,\,\,\,\,\,\left( 1 \right)\\\sqrt {{x^2}}  - m \le  - 1\,\,\forall x \in \left( {10; + \infty } \right)\,\,\,\left( 2 \right)\end{array} \right.\)

Xét (1) ta có \(m \le \sqrt {{x^2}}  - 1\,\,\forall x \in \left( {10; + \infty } \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}}  - 1} \right)\).

Xét \(g\left( x \right) = \sqrt {{x^2}}  - 1\) trên khoảng \(\left( {10; + \infty } \right)\) ta có \(g'\left( x \right) = \dfrac{x}{{\sqrt {{x^2}} }} > 0\,\,\forall x \in \left( {10; + \infty } \right)\), do đó hàm số đồng biến trên \(\left( {10; + \infty } \right)\) \( \Rightarrow \mathop {\min }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}}  - 1} \right) = g\left( {10} \right) = 9 \Leftrightarrow m \le 9\).

Xét (2) ta có: \(m \ge \sqrt {{x^2}}  + 1\,\,\forall x \in \left( {10; + \infty } \right)\) \( \Rightarrow m \ge \mathop {\max }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}}  + 1} \right)\).

Do \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2}}  + 1} \right) =  + \infty \) nên hàm số đã cho không có GTLN trên \(\left[ {10; + \infty } \right)\), do đó không tồn tại m thỏa mãn (2).

Vậy \(m \le 9\) nên giá trị nguyên lớn nhất của m bằng 9.

Hướng dẫn giải:

- Biến đổi \(f\left( {\left| x \right| - m} \right) = f\left( {\sqrt {{x^2}}  - m} \right)\).

- Tính đạo hàm của hàm số.

- Để hàm số đồng biến trên \(\left( {10; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\).

- Dựa vào BBT xác định các khoảng đồng biến của hàm số.

- Sử dụng phương pháp cô lập m.

Giải thích thêm:

Cách 2:

Ta vẽ đồ thị của hàm số \(y = f\left( {\left| x \right| - m} \right)\) với m>0

Tịnh tiến đồ thị hàm số \(y = f\left( x \right)\) sang phải m đơn vị, sau đó bỏ phần đồ thị của \(f\left( {x - m} \right)\) phía bên trái Oy. Lấy đối xứng phần đồ thị hàm số \(f\left( {x - m} \right)\) phía bên phải Oy qua Oy

Khi đó hàm số $f(x)$ đồng biến trên $\left( {1 ; + \infty } \right)$

=> Hàm số $y=f(x-m)$ đồng biến trên $\left( {1 +m; + \infty } \right)$

=> Hàm số $y=f(|x|-m)$ đồng biến trên $\left( {1 +m; + \infty } \right)$

Để hàm số \(y = f\left( {\left| x \right| - m} \right)\) đồng biến trên khoảng \(\left( {10; + \infty } \right)\) thì ta chỉ cần xét khoảng đồng biến của hàm số \(y = f\left( {\left| x \right| - m} \right)\) trên $\left( {1 +m; + \infty } \right)$ là được.

\(\left( {10; + \infty } \right) \subset \left( {1 + m; + \infty } \right) \Rightarrow 1 + m \le 10\)\( \Leftrightarrow m \le 9\).

Vậy giá trị nguyên lớn nhất của m là 9

Câu 24: Trắc nghiệm ID: 145996

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?

Xem đáp án
Đáp án đúng: b

Xét hàm số \(f\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2}\) ta có

\(\begin{array}{l}f'\left( x \right) = 12{x^3} - 12{x^2} - 24x\\f'\left( x \right) = 0 \Leftrightarrow 12{x^3} - 12{x^2} - 24x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 2\end{array} \right.\end{array}\)

BBT:

Ta có đồ thị \(y = f\left( x \right)\,\,\left( C \right)\) như sau:

Để \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị thì:

TH1: \(\left( C \right)\) cắt đường thẳng \(y =  - m\) tại 2 điểm phân biệt khác cực trị

\( \Leftrightarrow \left[ \begin{array}{l} - m > 0\\ - 32 <  - m <  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 0\\5 < m < 32\end{array} \right.\)

Mà \(m \in {\mathbb{Z}^ + }\, \Rightarrow m \in \left\{ {6;7;...;31} \right\}\) : 26 giá trị.

TH2: \(\left( C \right)\) cắt đường thẳng \(y =  - m\) tại 3 điểm phân biệt, trong đó có 1 cực trị

\( \Leftrightarrow \left[ \begin{array}{l} - m = 0\\ - m =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\,(L)\\m = 5\,(TM)\end{array} \right.\)

Vậy, có tất cả 27 giá trị của m thỏa mãn.

Câu 25: Trắc nghiệm ID: 145997

Cho hàm số \(y = f\left( x \right) = {2^{2019}}{x^3} + {3.2^{2018}}{x^2} - 2018\) có đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ \({x_1};{x_2};{x_3}\). Tính giá trị biểu thức \(P = \dfrac{1}{{f'\left( {{x_1}} \right)}} + \dfrac{1}{{f'\left( {{x_2}} \right)}} + \dfrac{1}{{f'\left( {{x_3}} \right)}}.\)

Xem đáp án
Đáp án đúng: c

Ta có \(f\left( x \right) = {2^{2019}}{x^3} + {3.2^{2018}}{x^2} - 2018\)

\( \Rightarrow f'\left( x \right) = {3.2^{2019}}{x^2} + {3.2^{2019}}x = {3.2^{2019}}x\left( {x + 1} \right)\) \( \Rightarrow \dfrac{1}{{f'\left( x \right)}} = \dfrac{1}{{{{3.2}^{2019}}}}.\dfrac{1}{{x.\left( {x + 1} \right)}} = \dfrac{1}{{{{3.2}^{2019}}}}\left( {\dfrac{1}{x} - \dfrac{1}{{x + 1}}} \right)\)

Xét phương trình hoành độ giao điểm của đồ thị hàm số với trục hoành \({2^{2019}}{x^3} + {3.2^{2018}}{x^2} - 2018 = 0\) (*)

Vì \({x_1},{x_2},{x_3}\) là ba ngiệm của phương trình (*) nên theo hẹ thức Vi-et ta có

\(\left\{ \begin{array}{l}{x_1} + {x_2} + {x_3} = \dfrac{{ - 3}}{2}\\{x_1}{x_2} + {x_2}{x_3} + {x_1}{x_3} = 0\\{x_1}{x_2}{x_3} = \dfrac{{2018}}{{{2^{2019}}}}\end{array} \right.\)

Ta có \(P = \dfrac{1}{{f'\left( {{x_1}} \right)}} + \dfrac{1}{{f'\left( {{x_2}} \right)}} + \dfrac{1}{{f'\left( {{x_3}} \right)}} = \dfrac{1}{{{{3.2}^{2019}}}}\left( {\dfrac{1}{{{x_1}}} - \dfrac{1}{{{x_1} + 1}} + \dfrac{1}{{{x_2}}} - \dfrac{1}{{{x_2} + 1}} + \dfrac{1}{{{x_3}}} - \dfrac{1}{{{x_3} + 1}}} \right)\)

\( = \dfrac{1}{{{{3.2}^{2019}}}}\left[ {\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \dfrac{1}{{{x_3}}}} \right) - \left( {\dfrac{1}{{{x_1} + 1}} + \dfrac{1}{{{x_2} + 1}} + \dfrac{1}{{{x_3} + 1}}} \right)} \right]\)

\( = \dfrac{1}{{{{3.2}^{2019}}}}\left[ {\dfrac{{{x_1}{x_2} + {x_2}{x_3} + {x_1}{x_3}}}{{{x_1}{x_2}{x_3}}} - \dfrac{{\left( {{x_2} + 1} \right)\left( {{x_3} + 1} \right) + \left( {{x_1} + 1} \right)\left( {{x_3} + 1} \right) + \left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)\left( {{x_3} + 1} \right)}}} \right]\)

\( = \dfrac{1}{{{{3.2}^{2019}}}}\left( {0 - \dfrac{{{x_1}{x_2} + {x_2}{x_3} + {x_1}{x_3} + 2\left( {{x_1} + {x_2} + {x_3}} \right) + 3}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)\left( {{x_3} + 1} \right)}}} \right)\)

\( = \dfrac{1}{{{{3.2}^{2019}}}}.\dfrac{{0 + 2.\dfrac{{ - 3}}{2} + 3}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)\left( {{x_3} + 1} \right)}} = 0\)

Hướng dẫn giải:

Sử dụng hệ thức Vi-et cho phương trình bậc ba \(a{x^3} + b{x^2} + cx + d = 0\,\left( {a \ne 0} \right)\) có ba nghiệm \({x_1},{x_2},{x_3}\)

\(\left\{ \begin{array}{l}{x_1} + {x_2} + {x_3} = \dfrac{{ - b}}{a}\\{x_1}{x_2} + {x_2}{x_3} + {x_1}{x_3} = \dfrac{c}{a}\\{x_1}{x_2}{x_3} =  - \dfrac{d}{a}\end{array} \right.\)

Sau đó biến đổi \(f'\left( x \right)\) để tính \(P.\)

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »