Ôn tập chương 5

Lý thuyết về ôn tập chương 5 Hệ thức lượng trong tam giác vuông; hệ thức về cạnh và đường cao, các tỉ số lượng giác, công thức lượng giác, hệ thức về cạnh và góc trong tam giác vuông môn toán lớp 9 với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(403) 1342 24/09/2022

I. Sơ đồ tư duy Ôn tập chương 5

II. Ôn tập chương 5: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

1. Hệ thức về cạnh và đường cao trong tam giác vuông

Cho tam giác ABC vuông tại A, đường cao AH. Khi đó ta có các hệ thức sau:

+) AB2=BH.BC hay c2=a.c

+) AC2=CH.BC hay b2=ab

+) AB.AC=BC.AH hay cb=ah

+) HA2=HB.HC hay h2=cb

+) 1AH2=1AB2+1AC2 hay 1h2=1c2+1b2.

+) BC2=AB2+AC2 (Định lí Pitago).

2. Tỉ số lượng giác của góc nhọn

Các tỉ số lượng giác của góc nhọn α (hình) được định nghĩa như sau:

sinα=ABBC;cosα=ACBC;tanα=ABAC;cotα=ACAB

+ Nếu α là một góc nhọn bất kỳ  thì

0<sinα<1;0<cosα<1, tanα>0;cotα>0sin2α+cos2α=1;tanα.cotα=1

tanα=sinαcosα;cotα=cosαsinα;

1+tan2α=1cos2α;1+cot2α=1sin2α

Chú ý: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Với hai góc α,βα+β=900,

Ta có: sinα=cosβ;cosα=sinβ;tanα=cotβ;cotα=tanβ.

Nếu hai góc nhọn αβsinα=sinβ hoặc cosα=cosβ thì α=β

So sánh các tỉ số lượng giác

Với α;β  là hai góc nhọn bất kì và α<β thì

sinα<sinβ;cosα>cosβ;tanα<tanβ;cotα>cotβ.

3. Bảng tỉ số lượng giác các góc đặc biệt

4. Hệ thức về cạnh và góc trong tam giác vuông

Cho tam giác ABC vuông tại ABC=a,AC=b,AB=c. Ta có :

b=a.sinB=a.cosC; c=a.sinC=a.cosB; b=c.tanB=c.cotC; c=b.tanC=b.cotB.

Trong một tam giác vuông

+) Cạnh  góc vuông  = (cạnh huyền ) x (sin góc đối)  = (cạnh huyền ) x (cosin góc kề)

+) Cạnh  góc vuông  = (cạnh góc vuông ) x (tan  góc đối)  = (cạnh góc vuông còn lại ) x (cotan  góc kề).

(403) 1342 24/09/2022