Công thức nghiệm thu gọn
I. Sơ đồ tư duy Công thức nghiệm thu gọn

II. Công thức nghiệm thu gọn
1. Các kiến thức cần nhớ
Nhắc lại công thức nghiệm của phương trình bậc hai
Xét phương trình bậc hai ax2+bx+c=0 (a≠0)
và biệt thức Δ=b2−4ac.
Trường hợp 1. Nếu Δ<0 thì phương trình vô nghiệm.
Trường hợp 2. Nếu Δ=0 thì phương trình có nghiệm kép: x1=x2=−b2a
Trường hợp 3. Nếu Δ>0 thì phương trình có hai nghiệm phân biệt: x1=−b+√Δ2a, x2=−b−√Δ2a
Công thức nghiệm thu gọn của phương trình bậc hai
Xét phương trình bậc hai ax2+bx+c=0(a≠0) với b=2b′ và biệt thức Δ′=b′2−ac.
Trường hợp 1. Nếu Δ′<0 thì phương trình vô nghiệm.
Trường hợp 2. Nếu Δ′=0 thì phương trình có nghiệm kép x1=x2=−b′a
Trường hợp 3. Nếu Δ′>0 thì phương trình có hai nghiệm phân biệt: x1=−b′+√Δ′a, x2=−b′−√Δ′a
2. Các dạng toán thường gặp
Dạng 1: Giải phương trình bậc hai một ẩn bằng cách sử dụng công thức nghiệm thu gọn
Phương pháp:
Xét phương trình bậc hai ax2+bx+c=0(a≠0) với b=2b′ và biệt thức Δ′=b′2−ac.
Trường hợp 1. Nếu Δ′<0 thì phương trình vô nghiệm.
Trường hợp 2. Nếu Δ′=0 thì phương trình có nghiệm kép x1=x2=−b′a
Trường hợp 3. Nếu Δ′>0 thì phương trình có hai nghiệm phân biệt: x1=−b′+√Δ′a, x2=−b′−√Δ′a
Dạng 2: Xác định số nghiệm của phương trình bậc hai
Phương pháp:
Xét phương trình bậc hai dạng ax2+bx+c=0 với b=2b′
+) Phương trình có nghiệm kép ⇔{a≠0Δ′=0
+) Phương trình có hai nghiệm phân biệt⇔{a≠0Δ′>0
+) Phương trình vô nghiệm ⇔[a=0,b′=0,c≠0a≠0,Δ′<0
Dạng 3: Giải và biện luận phương trình bậc hai (dùng một trong hai công thức: công thức nghiệm và công thức nghiệm thu gọn)
Phương pháp:
* Giải và biện luận phương trình bậc hai theo tham số m là tìm tập nghiệm của phương trình tùy theo sự thay đổi của m.
Xét phương trình bậc hai ax2+bx+c=0 với Δ=b2−4ac ( hoặc Δ′=(b′)2−ac )
Trường hợp 1. Nếu Δ<0 hoặc (Δ′<0) thì phương trình vô nghiệm.
Trường hợp 2. Nếu Δ=0 hoặc (Δ′=0) thì phương trình có nghiệm kép x1=x2=−b′a.
Trường hợp 3. Nếu Δ>0 hoặc (Δ′>0) thì phương trình có hai nghiệm phân biệt x1=−b′+√Δ′a, x2=−b′−√Δ′a.