Đề kiểm tra học kì 2 - Đề số 3
-
Hocon247
-
50 câu hỏi
-
90 phút
-
594 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Nếu \(\overrightarrow a ,\overrightarrow b \) là cặp VTCP của \(\left( P \right)\) thì véc tơ nào sau đây có thể là VTPT của \(\left( P \right)\)?
Vì tích có hướng của hai vecto là một vecto vuông góc với cả hai vecto ban đầu nên nó vuông góc với mặt phẳng $(P)$.
Nếu \(\overrightarrow a ,\overrightarrow b \) là cặp VTCP của \(\left( P \right)\) thì \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) là một VTPT của \(\left( P \right)\).
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì không nhớ tính chất của của cặp VTCP của mặt phẳng.
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A(2;1;0),\,\,B(1;-1;3)\). Mặt phẳng qua AB và vuông góc với mặt phẳng (P): \(x+3y-2z-1=0\) có phương trình là
Gọi mặt phẳng cần tìm là \(\left( \alpha \right)\).
(P): \(x+3y-2z-1=0\) có một VTPT \(\overrightarrow{{{n}_{(P)}}}\left( 1;3;-2 \right)=\overrightarrow{{{u}_{1}}}\). Vì \(\left( \alpha \right)\bot (P)\Rightarrow {{\overrightarrow{n}}_{\left( \alpha \right)}}\bot {{\overrightarrow{n}}_{\left( P \right)}}\)
\(AB\subset \left( \alpha \right)\Rightarrow {{\overrightarrow{n}}_{\left( \alpha \right)}}\bot \overrightarrow{AB}=\left( -1;-2;3 \right)=\overrightarrow{u_2}\)
Khi đó, \(\left( \alpha \right)\)có một vectơ pháp tuyến là: \(\overrightarrow{n}=\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]=(5;-1;1)\)
Phương trình \(\left( \alpha \right)\): \(5.(x-2)-1.(y-1)+1.(z-0)=0\Leftrightarrow 5x-y+z-9=0\)
Hướng dẫn giải:
Cho \(\overrightarrow{{{u}_{1}}},\overrightarrow{{{u}_{2}}}\) là cặp vectơ chỉ phương của mặt phẳng \(\left( \alpha \right)\), khi đó \(\overrightarrow{n}=\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]\) là một vectơ pháp tuyến của \(\left( \alpha \right)\).
\(\overrightarrow {{u_1}} = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}} = \left( {{x_2};{y_2};{z_2}} \right)\)
\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] =\) \( \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}{y_1}\\{y_2}\end{array}&\begin{array}{l}{z_1}\\{z_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{z_1}\\{z_2}\end{array}&\begin{array}{l}{x_1}\\{x_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{x_1}\\{x_2}\end{array}&\begin{array}{l}{y_1}\\{y_2}\end{array}\end{array}} \right|} \right) =\) \( \left( {{y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}} \right)\)
Tích phân \(\int\limits_{1}^{3}{{{e}^{x}}dx}\) bằng:
Ta có: \(\int\limits_{1}^{3}{{{e}^{x}}dx}=\left. {{e}^{x}} \right|_{1}^{3}={{e}^{3}}-e.\)
Hướng dẫn giải:
Sử dụng công thức tính tích phân của hàm cơ bản.
Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).
Ta có:
\(\Delta ' = 1 - 5 = - 4 \Rightarrow \left[ \begin{array}{l}{z_1} = - 1 + 2i\\{z_2} = - 1 - 2i\end{array} \right. \)
$\Rightarrow T = \left| {{z_1}} \right| + \left| {{z_2}} \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}} + \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = 2\sqrt 5$
Hướng dẫn giải:
- Bước 1: Tính \(\Delta = {B^2} - 4AC\).
- Bước 2: Tìm các căn bậc hai của \(\Delta \)
- Bước 3: Tính các nghiệm:
+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({z_{1,2}} = - \dfrac{B}{{2A}}\)
+ Nếu \(\Delta \ne 0\) thì phương trình có hai nghiệm phân biệt \({z_{1,2}} = \dfrac{{ - B \pm \sqrt \Delta }}{{2A}}\) (ở đó \(\sqrt \Delta \) là kí hiệu căn bậc hai của số phức \(\Delta \))
Giải thích thêm:
Một số em tính sai \(\Delta = 16\) dẫn đến tìm được hai nghiệm là \(1\) và \( - 3\) nên chọn nhầm đáp án A là sai.
Chọn mệnh đề đúng:
Ta có: \(\int {0dx} = C\) nên A đúng, D sai.
\(\int {dx} = x+C \) nên B, C sai
Giải thích thêm:
Nhiều HS sẽ chọn B vì nghĩ \(\int {dx} = C\) là sai.
Trong không gian với hệ tọa độ $Oxyz$, mặt cầu $\left( S \right)$ có tâm $I\left( {1,2, - 3} \right)$ và đi qua điểm $A\left( {1,0,4} \right)$ có phương trình là
Mặt cầu $\left( S \right)$ có tâm $I\left( {1,2, - 3} \right)$ và đi qua điểm $A\left( {1,0,4} \right)$ có bán kính \(R = IA = \sqrt {{{(1 - 1)}^2} + {{(0 - 2)}^2} + {{(4 + 3)}^2}} = \sqrt {53} \)
Do đó \({(x - 1)^2} + {(y - 2)^2} + {(z + 3)^2} = 53.\)
Hướng dẫn giải:
- Tính bán kính mặt cầu \(R = IA\)
- Viết phương trình mặt cầu dưới dạng tổng quát:
Phương trình mặt cầu qua $I\left( {a,b,c} \right)$ và bán kính $R$có dạng \({(x - a)^2} + {(y - b)^2} + {(z - c)^2} = {R^2}\).
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì nhớ nhầm dạng phương trình tổng quát của mặt cầu là sai.
Tìm nguyên hàm của hàm số \(f\left( x \right)=3\cos x+\dfrac{1}{{{x}^{2}}}\) trên \(\left( 0;\,+\infty \right)\).
Ta có \(\int {f\left( x \right){\text{d}}x} = \int {\left( {3\cos x + \dfrac{1}{{{x^2}}}} \right){\text{d}}x} = 3\sin x - \dfrac{1}{x} + C\)
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?
Các mệnh đề A, B, C đều đúng. Mệnh đề D sai.
Giải thích thêm:
HS thường nhầm lẫn giữa đáp án D và A, cần nhớ kĩ trong khi đổi cận.
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
Số phức $3 - 2\sqrt 2 i$ có phần thực bằng $3$ phần ảo bằng $ - 2\sqrt 2 $ hay $\left\{ \begin{array}{l}a = 3\\b = - 2\sqrt 2 \end{array} \right.$
Hướng dẫn giải:
Sử dụng định nghĩa về số phức: $z = a + bi,a,b \in R$, trong đó $a$ là phần thực của số phức và $b$ là phần ảo của số phức
$F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right) = \ln x$ và $F\left( 1 \right) = 3.$ Khi đó giá trị của $F\left( e \right)$ là:
Theo đề bài ta có: $F\left( x \right) = \int {f\left( x \right)dx} = \int {\ln xdx} .$
Đặt $\left\{ {\begin{array}{*{20}{l}}{u = \ln x}\\{dv = dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{du = \dfrac{1}{x}dx}\\{v = x}\end{array}} \right.$
$ \Rightarrow F\left( x \right) = \int {\ln xdx} = x\ln x - \int {x.\dfrac{1}{x}dx = x\ln x - \int {dx} = x\ln x - x + C.} $
Theo đề bài ta có: $F\left( 1 \right) = 3 \Rightarrow 1.\ln {\mkern 1mu} {\mkern 1mu} 1 - 1 + C = 3 \Leftrightarrow C = 4.$
$\begin{array}{*{20}{l}}{\rm{\;}}&{ \Rightarrow F\left( x \right) = x\ln x - x + 4}\\{{\rm{ \;}}}&{ \Rightarrow F\left( e \right) = e\ln e - e + 4 = 4.}\end{array}$
Hướng dẫn giải:
Ta có: $F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right) \Rightarrow F'\left( x \right) = f\left( x \right){\mkern 1mu} {\mkern 1mu} hay{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \int {f\left( x \right)dx = F\left( x \right).} $
+) Tìm nguyên hàm của hàm $f\left( x \right)$ bằng phương pháp tích phân từng phần sau đó thay giá trị $F\left( 1 \right) = 3$ để tìm hàng số C.
+) Thay giá trị $x = e$ vào hàm $F\left( x \right)$ vừa tìm được để tính $F\left( e \right).$
Cho \(\overrightarrow a ,\overrightarrow b \) là các VTCP của mặt phẳng \(\left( P \right)\)
. Chọn kết luận sai?
- Một mặt phẳng có vô số VTPT nên A đúng.
- Véc tơ \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) là một VTPT của \(\left( P \right)\) nên mọi véc tơ cùng phương với nó đều là VTPT của \(\left( P \right)\), do đó B đúng, C sai.
- Hai véc tơ muốn là VTCP của mặt phẳng thì chúng phải không cùng phương nên D đúng.
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì nghĩ rằng \(\left( P \right)\) chỉ có một VTPT là sai.
Cho hai số phức ${z_1} = 2017 - i$ và ${z_2} = 2 - 2016i$. Tìm số phức $z = {z_1}.{z_2}.$
Ta có $z = {z_1}.{z_2} = \left( {2017 - i} \right)\left( {2 - 2016i} \right) = 2017.2 - 2017.2016i - 2i + 2016{i^2}$
$ = 4034 - 4066272i - 2i - 2016 = \left( {4034 - 2016} \right) + \left( { - 4066272i - 2} \right)i = 2018 - 4066274i.$
Hướng dẫn giải:
Sử dụng công thức nhân hai số phức \(z.z' = \left( {a + bi} \right)\left( {a' + b'i} \right) = \left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i\)
Giải thích thêm:
Các em cũng có thể dùng MTBT để tính, chú ý bấm MODE + 2 rồi mới bấm tích \({z_1}{z_2}\).
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Ta có: \(\overrightarrow{AB}=\left( 2;-2;6 \right)=2\left( 1;-1;3 \right)\).
\(\Rightarrow \) đường thẳng d đi qua A và nhận \(\overrightarrow{u}=\left( 1;-1;3 \right)\) là 1 VTCP nên có phương trình : \(d:\,\,\frac{x+1}{1}=\frac{y-2}{-1}=\frac{z+4}{3}\)
Hướng dẫn giải:
Đường thẳng d đi qua \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\) và có 1 VTCP là \(\overrightarrow{u}=\left( a;b;c \right)\,\,\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}>0 \right)\) có phương trình chính tắc: \(\frac{x-{{x}_{0}}}{a}=\frac{y-{{y}_{0}}}{b}=\frac{z-{{z}_{0}}}{c}\)
Trong không gian $Oxyz$ cho $3$ véc tơ: \(\vec a\left( {4;2;5} \right),\vec b\left( {3;1;3} \right),\vec c\left( {2;0;1} \right)\). Kết luận nào sau đây đúng
Tính \(\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}2&5\\1&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&4\\3&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&2\\3&1\end{array}} \right|} \right) = \left( {1;3; - 2} \right)\). Suy ra loại A
Tính \(\left[ {\vec a,\vec b} \right].\vec c = \left( {1;3; - 2} \right).\left( {2;0;1} \right) = 0\). Suy ra \(\vec a,\vec b,\vec c\) đồng phẳng.
Hướng dẫn giải:
Sử dụng điều kiện véc tơ cùng phương \(\overrightarrow u = k\overrightarrow v \), véc tơ đồng phẳng \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{u_3}} = 0\)
Cho số phức \(z\) thỏa mãn\(|z - 1 - 2i| = 4\). Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(|z + 2 + i|\). Tính \(S = {M^2} + {m^2}\).
Theo bất đẳng thức chứa dấu giá trị tuyệt đối ta có
\(|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \ge ||z - 1 - 2i| - |3 + 3i|| = |4 - 3\sqrt 2 | = 3\sqrt 2 - 4 = m\)
\(|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \le |z - 1 - 2i| + |3 + 3i| = 4 + 3\sqrt 2 = M\)
Suy ra \({M^2} + {m^2} = {(3\sqrt 2 - 4)^2} + {(4 + 3\sqrt 2 )^2} = 2({4^2} + {(3\sqrt 2 )^2}) = 68\)
Hướng dẫn giải:
Áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối: \(\left| A \right| - \left| B \right| \le \left| {A \pm B} \right| \le \left| A \right| + \left| B \right|\).
Đặc biệt $\left| {\left| A \right| - \left| B \right|} \right| \leqslant \left| {A \pm B} \right| \leqslant \left| A \right| + \left| B \right|$
Giải thích thêm:
- Áp dụng sai bất đẳng thức chứa dấu giá trị tuyệt đối.
- Tính sai mô đun số phức.
Trong không gian với hệ tọa độ $Oxyz$, xét mặt cầu $\left( S \right)$ đi qua hai điểm $A\left( {1;2;1} \right);B\left( {3;2;3} \right)$, có tâm thuộc mặt phẳng $\left( P \right):x - y - 3 = 0$ , đồng thời có bán kính nhỏ nhất, hãy tính bán kính $R$ của mặt cầu $\left( S \right)$?
Gọi $I$ là tâm mặt cầu $\left( S \right),I\left( {a,b,c} \right)$ .
Suy ra \(a - b - 3 = 0 \Rightarrow a = b + 3 \Rightarrow I(b + 3;b;c)\)
\(I{A^2} = I{B^2} = {R^2}\) \( \Leftrightarrow {(b + 2)^2} + {(b - 2)^2} + {(c - 1)^2} = {b^2} + {(b - 2)^2} + {(c - 3)^2}\)
\(\begin{array}{l}
\Leftrightarrow {\left( {b + 2} \right)^2} + {\left( {c - 1} \right)^2} = {b^2} + {\left( {c - 3} \right)^2}\\
\Leftrightarrow {b^2} + 4b + 4 + {c^2} - 2c + 1 = {b^2} + {c^2} - 6c + 9\\
\Leftrightarrow 4b + 4c - 4 = 0\\
\Leftrightarrow b + c - 1 = 0 \Leftrightarrow c = 1 - b
\end{array}\)
\({R^2} = {\left( {b + 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( { - b} \right)^2} = 3{b^2} + 8 \ge 8 \Rightarrow R \ge 2\sqrt 2 \)
\(\min R = 2\sqrt 2 \) khi $b = 0$
Hướng dẫn giải:
+ Gọi tâm $\left( S \right)$ là $I\left( {a;b;c} \right)$
+ Tìm mối quan hệ của $a,b,c$ để biến đổi về 1 ẩn, sau đó đánh giá tìm min của $R$.
Cho hai véc tơ \(\overrightarrow u = \left( {a;0;1} \right),\overrightarrow v = \left( { - 2;0;c} \right)\). Biết \(\overrightarrow u = \overrightarrow v \), khi đó:
\(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\0 = 0\\1 = c\end{array} \right.\)
Hướng dẫn giải:
Sử dụng tính chất hai véc tơ bằng nhau \(\overrightarrow {{u_1}} = \overrightarrow {{u_2}} \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\)
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số $y = {x^3} - x;y = 2x$ và các đường thẳng $x = - 1;x = 1$ được xác định bởi công thức:
Xét phương trình hoành độ giao điểm của 2 đồ thị:
${x^3}-x = 2x \Leftrightarrow {x^3}-3x = 0 \Leftrightarrow x = 0$ (chỉ xét trên $\left( {-1;1} \right)$)
Với $x \in \left( {-1;0} \right)$ thì ${x^3}-3x > 0$ ; với $x \in \left( {0;1} \right)$ thì ${x^3}-3x < 0$
Diện tích cần tìm là $S = \int\limits_{ - 1}^1 {\left| {{x^3} - 3x} \right|dx} = \int\limits_{ - 1}^0 {\left( {{x^3} - 3x} \right)dx} + \int\limits_0^1 {\left( {3x - {x^3}} \right)dx} $
Hướng dẫn giải:
- Bước 1: Giải phương trình \(f\left( x \right) = g\left( x \right)\) tìm nghiệm.
- Bước 2: Phá dấu giá trị tuyệt đối của biểu thức \(\left| {f\left( x \right) - g\left( x \right)} \right|\)
- Bước 3: Tính diện tích hình phẳng theo công thức tích phân \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = \dfrac{{{\rm{d}}x}}{{x + 2}}\\v = \dfrac{{{x^2}}}{2}\end{array} \right.,$ khi đó $I = \left. {\dfrac{{{x^2}\ln \left( {x + 2} \right)}}{2}} \right|_0^1 - \dfrac{1}{2}\int\limits_0^1 {\dfrac{{{x^2}}}{{x + 2}}{\rm{d}}x} .$
Hướng dẫn giải:
Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).
Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {2;2;0} \right)\) và \(D\left( {0;m;0} \right)\). Điều kiện cần và đủ của \(m\) để khoảng cách giữa hai đường thẳng \(AB\) và \(CD\) bằng \(2\) là:
Ta có \(\overrightarrow {AB} = \left( {1;0; - 2} \right)\), \(\overrightarrow {CD} = \left( { - 2;m - 2;0} \right)\) và \(\overrightarrow {AC} = \left( {2;2; - 2} \right)\).
Suy ra \(\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right] = \left( {2m - 4;4;m - 2} \right)\).
Do đó \(d\left[ {AB,CD} \right] = \dfrac{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right].\overrightarrow {AC} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]} \right|}} \Leftrightarrow \dfrac{{\left| {2\left( {2m - 4} \right) + 8 - 2\left( {m - 2} \right)} \right|}}{{\sqrt {{{\left( {2m - 4} \right)}^2} + {4^2} + {{\left( {m - 2} \right)}^2}} }} = 2\)
\( \Leftrightarrow \left| {2m + 4} \right| = 2\sqrt {5{m^2} - 20m + 36} \Leftrightarrow \left[ \begin{array}{l}m = 4\\m = 2\end{array} \right.\).
Hướng dẫn giải:
Khoảng cách \(AB\) và \(CD\) được tính theo công thức \(d\left( {AB,CD} \right) = \dfrac{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right].\overrightarrow {AC} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]} \right|}}.\)
Đặt \(F\left( x \right) = \int\limits_1^x {tdt} \). Khi đó \(F'\left( x \right)\) là hàm số nào dưới đây?
Ta có: \(F\left( x \right) = \int\limits_1^x {tdt} = \left. {\dfrac{{{t^2}}}{2}} \right|_1^x = \dfrac{{{x^2}}}{2} - \dfrac{1}{2} \Rightarrow F'\left( x \right) = x\)
Hướng dẫn giải:
Sử dụng công thức tính tích phân \(F\left( b \right) - F\left( a \right) = \int\limits_a^b {f\left( x \right)dx} \).
Giải thích thêm:
HS thường nhầm lẫn \(F'\left( x \right) = \int\limits_1^x {t'dt} = \int\limits_1^x {1dt} = x - 1\) và chọn đáp án C là sai.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B(0;3;1)\). Tọa độ trung điểm của đoạn thẳng AB là
\(I\) là trung điểm của \(AB\) thì tọa độ của \(I\) thỏa mãn
\(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{ - 2 + 0}}{2} = - 1\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 1 + 3}}{2} = 1\\{z_I} = \frac{{{z_A} + {z_B}}}{2} = \frac{{3 + 1}}{2} = 2\end{array} \right. \Rightarrow I\left( { - 1;1;2} \right)\)
Hướng dẫn giải:
Cho \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), \(I\) là trung điểm của \(AB\) thì \(I\left( {\dfrac{{{x_A} + {x_B}}}{2};\dfrac{{{y_A} + {y_B}}}{2};\dfrac{{{z_A} + {z_B}}}{2}} \right)\)
Giải thích thêm:
Rất nhiều HS quên chia cho \(2\) khi tính tọa độ trung điểm dẫn đến chọn nhầm đáp án D
Nếu \(x = u\left( t \right)\) thì:
Nếu \(x = u\left( t \right)\) thì \(dx = u'\left( t \right)dt\).
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường \(\left( E \right):\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1\) quay quanh \(Oy\,\,?\)

\(\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow {x^2} = 16\left( {1 - \dfrac{{{y^2}}}{9}} \right) \Leftrightarrow x = \pm \dfrac{4}{3}\sqrt {9 - {y^2}} \)
Phương trình tung độ giao điểm của đồ thị \(\left( E \right)\) với $Oy$ là \(\dfrac{0}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow \left[ \begin{array}{l}y = - \,3\\y = 3\end{array} \right..\)
Ta xét thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị hàm số \(x = \dfrac{4}{3}\sqrt {9 - {y^2}} \), đường thẳng $x = 0, y = 3, y = 0$ quanh trục $Oy$ là: \(V = \left| {\dfrac{{16}}{9}\pi \int\limits_0^3 {\left( {9 - {y^2}} \right)dy} } \right| = \left| {\dfrac{{16}}{9}\left. {\pi \left( {9y - \dfrac{{{y^3}}}{3}} \right)} \right|_0^3} \right| = 32\pi \).
Khi đó thể tích cần tìm là \(2V = 64\pi \).
Hướng dẫn giải:
Rút hàm số đã cho theo biến y : \(x = f\left( y \right)\), Vẽ hình và xác định các đường giới hạn.
Áp dụng công thức tính thể tích khối tròn khi xoay quanh trục Oy của hình phẳng bị giới hạn bởi đồ thị các hàm số \(x = f\left( y \right),x = g\left( y \right),y = a,y = b\) là \(V = \int\limits_a^b {\left| {{f^2}\left( y \right) - {g^2}\left( y \right)} \right|dy} \).
Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Phương trình đáp án B có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) với \(a = - 1,b = 2,c = 1\) và \(R = 3\) là phương trình mặt cầu.
Phương trình đáp án A có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = - 1,b = - 1,c = - 1,d = - 8\) có \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \) là một phương trình mặt cầu.
Xét phương án C có
\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\).
Phương trình có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = 1,b = - \dfrac{1}{2},c = - \dfrac{1}{2},d = 8\) có \({a^2} + {b^2} + {c^2} - d = 1 + \dfrac{1}{4} + \dfrac{1}{4} - 8 < 0.\)
Không phải là phương trình mặt cầu.
Hướng dẫn giải:
Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) là phương trình mặt cầu là \({a^2} + {b^2} + {c^2} - d > 0\)
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì xác định sai số \(d = 8\) dẫn đến tính \({a^2} + {b^2} + {c^2} - d < 0\) là sai.
Tính \(I = \int {x{{\tan }^2}xdx} \) ta được:
\(I = \int {x{{\tan }^2}xdx} = \int {x\left( {\dfrac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \int {x.\dfrac{1}{{{{\cos }^2}x}}dx} - \int {xdx} = {I_1} - {I_2}\)
Ta có: \({I_2} = \int {xdx} = \dfrac{{{x^2}}}{2} + {C_2},{I_1} = \int {x\dfrac{1}{{{{\cos }^2}x}}dx} \)
Đặt $\left\{ \begin{array}{l}u = x\\dv = \dfrac{1}{{{{\cos }^2}x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \tan x\end{array} \right.$
$\begin{array}{l} \Rightarrow {I_1} = x\tan x - \int {\tan xdx} + {C_1} = x\tan x - \int {\dfrac{{\sin x}}{{\cos x}}dx} + {C_1} \\ = x\tan x + \int {\dfrac{{d\left( {\cos x} \right)}}{{\cos x}}} + {C_1} = x\tan x + \ln \left| {\cos x} \right| + {C_1}.\\ \Rightarrow I = x\tan x + \ln \left| {\cos x} \right| + {C_1} - \dfrac{{{x^2}}}{2} - {C_2} = x\tan x + \ln \left| {\cos x} \right| - \dfrac{{{x^2}}}{2} + C.\end{array}$
Hướng dẫn giải:
Sử dụng công thức \({\tan ^2}x = \dfrac{1}{{{{\cos }^2}x}} - 1,\) sau đó tách thành 2 nguyên hàm và sử dụng phương pháp nguyên hàm từng phần.
Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx} \) được viết dưới dạng \(a + b\ln 2\) với \(a,b \in Q\). Khi đó \(a + b\) có giá trị là:
Ta có: \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx} = \left. {\left( {\dfrac{{{x^2}}}{2} + x + 2\ln \left| {x - 1} \right|} \right)} \right|_{ - 1}^0 \)
$= \dfrac{1}{2} - 2\ln 2 \Rightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b = - 2\end{array} \right. \Rightarrow a + b = - \dfrac{3}{2}$
Hướng dẫn giải:
Sử dụng bảng nguyên hàm các hàm sơ cấp để tính tích phân, từ đó tìm \(a,b \Rightarrow a + b\).
Giải thích thêm:
Một số em HS tính nhầm bước thế cận dẫn đến kết quả \( - \dfrac{1}{2} + 2\ln 2\) và chọn đáp án A là sai.
Tích phân $\int\limits_{ - 1}^5 {\left| {{x^2} - 2x - 3} \right|} dx$ có giá trị bằng:
$\begin{array}{c}\int\limits_{ - 1}^5 {\left| {{x^2} - 2x - 3} \right|dx} = \int\limits_{ - 1}^5 {\left| {(x - 3)(x + 1)} \right|dx} = - \int\limits_{ - 1}^3 {\left( {{x^2} - 2x - 3} \right)dx} + \int\limits_3^5 {\left( {{x^2} - 2x - 3} \right)dx} \\ = - \left. {\left( {\dfrac{{{x^3}}}{3} - {x^2} - 3x} \right)} \right|_{ - 1}^3 + \left. {\left( {\dfrac{{{x^3}}}{3} - {x^2} - 3x} \right)} \right|_3^5 = \dfrac{{64}}{3}.\end{array}$
Hướng dẫn giải:
Phá dấu giá trị tuyệt đối trong từng khoảng rồi tính tích phân.
Cho \(\int\limits_0^b {\frac{{{e^x}}}{{\sqrt {{e^x} + 3} }}dx} = 2\) với \(b \in K\). Khi đó $K$ có thể là khoảng nào trong các khoảng sau?
Đặt \(t = \sqrt {{e^x} + 3} \Rightarrow {t^2} = {e^x} + 3 \Leftrightarrow 2tdt = {e^x}dx\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 2\\x = b \Rightarrow t = \sqrt {{e^b} + 3} \end{array} \right.\)
Khi đó ta có:
\(\int\limits_0^b {\frac{{{e^x}}}{{\sqrt {{e^x} + 3} }}dx} = 2 \Leftrightarrow \int\limits_2^{\sqrt {{e^b} + 3} } {\frac{{2tdt}}{t}} = 2 \Leftrightarrow \left. t \right|_2^{\sqrt {{e^b} + 3} } = 1 \Leftrightarrow \sqrt {{e^b} + 3} - 2 = 1 \Leftrightarrow b = \ln 6 \approx 1,8\)
Vậy trong các khoảng ở đáp án chỉ có đáp án A thỏa mãn.
Hướng dẫn giải:
Sử dụng phương pháp đổi biến, đặt \(t = \sqrt {{e^x} + 3} \).
Biết \(\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=a\ln 5+b\ln 3+c}\) trong đó a, b, c là các số nguyên. Giá trị biểu thức \(T=a+b+c\) là
Đặt \({{x}^{2}}+9=t\Rightarrow 2xdx=dt\Rightarrow xdx=\frac{1}{2}dt\).
Đổi cận:
$\begin{array}{l}
x = 0 \Rightarrow t = 9\\
x = 4 \Rightarrow t = 25
\end{array}$
Khi đó, ta có: \(I=\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=}\frac{1}{2}\int\limits_{9}^{25}{\ln tdt}=\frac{1}{2}\left[ \left. t.\ln \left| t \right| \right|_{9}^{25}-\int_{9}^{25}{td(\ln t)} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{t.\frac{1}{t}dt} \right]\)
\(=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{dt} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\left. t \right|_{9}^{25} \right]=\frac{1}{2}\left[ \left( 25\ln 25-9\ln 9 \right)-(25-9) \right]=25\ln 5-9\ln 3-8\)
Suy ra, \(a=25,\,b=-9,\,c=-8\Rightarrow T=a+b+c=8\)
Hướng dẫn giải:
Sử dụng kết hợp các phương pháp đổi biến và từng phần để tính tích phân.
Cho \(\left( H \right)\) là hình phẳng giới hạn bởi parabol \(y=\sqrt{3}{{x}^{2}}\), cung tròn có phương trình \(y=\sqrt{4-{{x}^{2}}}\) (với \(0\le x\le 2\)) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của \(\left( H \right)\) bằng


Ta có:
\(\sqrt{3}{{x}^{2}}=\sqrt{4-{{x}^{2}}}\Leftrightarrow 3{{x}^{4}}+{{x}^{2}}-4=0\Leftrightarrow \left( {{x}^{2}}-1 \right)\left( {{x}^{2}}+4 \right)=0\Leftrightarrow \left[ \begin{align} & x=1(TM) \\ & x=-1(L) \\ \end{align} \right.\)
Do đó:
\(S=\int\limits_{0}^{1}{\sqrt{3}{{x}^{2}}dx}+\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}=\left. \frac{\sqrt{3}}{3}{{x}^{3}} \right|_{0}^{1}+\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}=\frac{\sqrt{3}}{3}+\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}\)
Tính \(I=\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}\).
Đặt \(x=2\sin t\Rightarrow dx=2\cos tdt\).
Đổi cận \(\left\{ \begin{align} & x=1\Rightarrow \sin t=\frac{1}{2}\Rightarrow t=\frac{\pi }{6} \\ & x=2\Rightarrow \sin t=1\Rightarrow t=\frac{\pi }{2} \\ \end{align} \right.\)
\(\begin{align} & I=\int\limits_{1}^{2}{\sqrt{4-{{x}^{2}}}dx}=\int\limits_{\pi /6}^{\pi /2}{\sqrt{4-4{{\sin }^{2}}t}.2\cos tdt}=\int\limits_{\pi /6}^{\pi /2}{4{{\cos }^{2}}tdt}=\int\limits_{\pi /6}^{\pi /2}{2\left( \cos 2t+1 \right)dt} \\ & =\left. \sin 2t \right|_{\pi /6}^{\pi /2}+\left. 2t \right|_{\pi /6}^{\pi /2}=\frac{2\pi }{3}-\frac{\sqrt{3}}{2} \\ \end{align}\)
Suy ra \(S=\frac{\sqrt{3}}{3}+\frac{2\pi }{3}-\frac{\sqrt{3}}{2}=\frac{4\pi -\sqrt{3}}{6}\).
Hướng dẫn giải:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right),y=0,x=a;x=b\) \(S=\int\limits_{a}^{b}{\left| f\left( x \right) \right|dx}\)
Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y=\sqrt{x},\) trục hoành và đường thẳng \(x=9.\) Khi (H) quay quanh trục Ox tạo thành một khối tròn xoay có thể tích bằng:
Đk: \(x\ge 0\).
Xét phương trình hoành độ giao điểm \(\sqrt{x}=0\Leftrightarrow x=0\). Khi đó \(V=\pi \int\limits_{0}^{9}{xdx}=\left. \pi \frac{{{x}^{2}}}{2} \right|_{0}^{9}=\frac{81\pi }{2}\)
Hướng dẫn giải:
Sử dụng công thức ứng dụng tích phân để tính thể tích vật tròn xoay.
Thể tích của khối tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành, đường thẳng \(x=a;\,\,x=b\) quanh $Ox$ là \(V=\pi \int\limits_{a}^{b}{{{f}^{2}}\left( x \right)dx}\).
Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)
Ta có $w = {i^5}\left( {1 + i + {i^2} + {i^3} + ... + {i^{13}}} \right) $ $= i.\left( {1 + i + {i^2} + {i^3} + ... + {i^{13}}} \right).$
Dễ thấy $T = 1 + i + {i^2} + {i^3} + ... + {i^{13}}$ là tổng của cấp số nhân có $14$ số hạng, trong đó số hạng đầu tiên ${u_1} = 1$, công bội $q = i$.
Do đó $T = {u_1}\dfrac{{1 - {q^{14}}}}{{1 - q}} = 1.\dfrac{{1 - {i^{14}}}}{{1 - i}} = \dfrac{{1 + 1}}{{1 - i}}$ $ = \dfrac{{2\left( {1 + i} \right)}}{{1 + 1}} = 1 + i$
Vậy \(w = i\left( {1 + i} \right) = - 1 + i \Rightarrow \left\{ \begin{array}{l}a = - 1\\b = 1\end{array} \right.\) \( \Rightarrow S = a + b = 0\)
Hướng dẫn giải:
Sử dụng công thức tính tổng \(n\) số hạng đầu của cấp số nhân \({S_n} = u_1.\dfrac{{1 - {q^n}}}{{1 - q}}\).
Cho số phức \({\rm{w}}\)và hai số thực \(a,b\). Biết \({z_1} = {\rm{w}} + 2i\) và \({z_2} = 2w - 3\) là 2 nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\).
Đặt \({\rm{w}} = x + yi\). Khi đó:
\(\begin{array}{l}{z_1} = x + yi + 2i = x + \left( {y + 2} \right)i;{z_2} = 2(x + yi) - 3 = \left( {2x - 3} \right) + 2yi \\ \Rightarrow {z_2} = \left( {2x - 3} \right) - 2yi\\{z_1} = \overline {{z_2}} \Leftrightarrow \left\{ \begin{array}{l}x = 2x - 3\\y + 2 = - 2y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - \dfrac{2}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{z_1} = 3 + \dfrac{4}{3}i\\{z_2} = 3 - \dfrac{4}{3}i\end{array} \right. \\ \Rightarrow T = \left| {{z_1}} \right| + \left| {{z_2}} \right| = \sqrt {{3^2} + {{\left( {\dfrac{4}{3}} \right)}^2}} + \sqrt {{3^2} + {{\left( { - \dfrac{4}{3}} \right)}^2}} = \dfrac{{2\sqrt {97} }}{3}\end{array}\)
Hướng dẫn giải:
Nếu \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + az + b = 0\) thì \({z_1} = \overline {{z_2}} \).
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện $\left| {z - i} \right| = 5$ và \({z^2}\) là số thuần ảo?
Đặt \(z = a + bi\)
Ta có: $\left| {z - i} \right| = 5 \Leftrightarrow \left| {a + bi - i} \right| = 5 $ $\Leftrightarrow \left| {a + \left( {b - 1} \right)i} \right| = 5 \Leftrightarrow \sqrt {{a^2} + {{\left( {b - 1} \right)}^2}} = 5 $ $\Leftrightarrow {a^2} + {\left( {b - 1} \right)^2} = 25$ (1)
${z^2} = (a+bi)^2={a^2} + 2{\rm{a}}bi - {b^2}=a^2-b^2+2abi$
Do \({z^2}\) là số thuần ảo nên:${a^2} - {b^2} = 0 \Leftrightarrow \left( {a - b} \right)\left( {a + b} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
b = a\\
b = - a
\end{array} \right.$
TH1: b=a thay vào (1) ta được:
${a^2} + {\left( {a - 1} \right)^2} = 25 $ $\Leftrightarrow {a^2} + {a^2} - 2a + 1 = 25$ $ \Leftrightarrow 2{a^2} - 2a - 24 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}
a = 4 \Rightarrow b = 4\\
a = - 3 \Rightarrow b = - 3
\end{array} \right.$
TH2: b=-a thay vào (1) ta được:
${a^2} + {\left( { - a - 1} \right)^2} = 25$ $ \Leftrightarrow {a^2} + {a^2} + 2a + 1 = 25 $ $\Leftrightarrow 2{a^2} + 2a - 24 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}
a = 3 \Rightarrow b = - 3\\
a = - 4 \Rightarrow b = 4
\end{array} \right.$
Vậy có $4$ số phức cần tìm là: $4+4i, -3-3i,$ $3-3i, -4+4i$.
Hướng dẫn giải:
- Số phức \(z\) là số ảo nếu \(a = 0\)
Giải thích thêm:
Một số em nhớ nhầm điều kiện số ảo là \(ab = 0 \Rightarrow \left[ \begin{array}{l}a = 0\\b = 0\end{array} \right.\) dẫn đến chọn nhầm đáp án A là sai.
Cho số phức $z$ thay đổi, luôn có $\left| z \right| = 2$ . Khi đó tập hợp điểm biểu diễn số phức ${\rm{w}} = (1 - 2i)\overline z + 3i$ là
Giả sử ${\rm{w}} = a + bi(a,b \in R) \Rightarrow a + bi = (1 - 2i)\overline z + 3i$ $\begin{array}{l} \Rightarrow \overline z = \dfrac{{a + (b - 3)i}}{{1 - 2i}} = \dfrac{{\left[ {a + (b - 3)i} \right](1 + 2i)}}{5} = \dfrac{{a - 2(b - 3) + (2a + b - 3)i}}{5}\\ \Rightarrow \left| {\overline z } \right| = \dfrac{1}{5}\sqrt {{{\left[ {a - 2(b - 3)} \right]}^2} + {{(2a + b - 3)}^2}} = 2\\ \Rightarrow {(a - 2b + 6)^2} + {(2a + b - 3)^2} = 100\\ \Rightarrow {(a - 2b)^2} + {(2a + b)^2} + 12(a - 2b) - 6(2a + b) = 55\\ \Rightarrow 5{a^2} + 5{b^2} - 30b = 55 \Rightarrow {a^2} + {b^2} - 6b = 11 \Rightarrow {a^2} + {(b - 3)^2} = 20\end{array}$
Hướng dẫn giải:
- Đặt \(w = a + bi\), rút $\overline z $ theo \(w\) và thay và điều kiện \(\left| z \right| = 2\) suy ra đáp án.
Biết số phức $z = x + yi{\rm{ }}\left( {x;y \in \mathbb{R}} \right)$ thỏa mãn đồng thời các điều kiện $\left| {z - \left( {3 + 4i} \right)} \right| = \sqrt 5 $ và biểu thức $P = {\left| {z + 2} \right|^2} - {\left| {z - i} \right|^2}$ đạt giá trị lớn nhất. Tính $\left| z \right|$.
Vì $\left| {z - \left( {3 + 4i} \right)} \right| = \sqrt 5 \Rightarrow {\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 5.$
Suy ra tập hợp các điểm biểu diễn số phức \(z\) là đường tròn $\left( C \right)$ có tâm $I\left( {3;4} \right)$ và bán kính $R = \sqrt 5 $.
Ta có $P = {\left| {\left( {x + 2} \right) + yi} \right|^2} - {\left| {x + \left( {y - 1} \right)i} \right|^2} = {\left( {x + 2} \right)^2} + {y^2} - \left[ {{x^2} + {{\left( {y - 1} \right)}^2}} \right]$.
$ = 4x + 2y + 3 \Leftrightarrow 4x + 2y + 3 - P = 0.$
Ta tìm $P$ sao cho đường thẳng $\Delta :4x + 2y + 3 - P = 0$ và đường tròn $\left( C \right)$ có điểm chung $ \Leftrightarrow d\left[ {I,\Delta } \right] \le R \Leftrightarrow \dfrac{{\left| {12 + 8 + 3 - P} \right|}}{{\sqrt {20} }} \le \sqrt 5 \Leftrightarrow \left| {23 - P} \right| \le 10 \Leftrightarrow 13 \le P \le 33.$
Do đó ${P_{\max }} = 33$. Dấu $'' = ''$ xảy ra $ \Leftrightarrow \left\{ \begin{array}{l}4x + 2y - 30 = 0\\{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = \,5\end{array} \right.$.
Vậy $\left| z \right| = \sqrt {{5^2} + {{\left( { - 5} \right)}^2}} = 5\sqrt 2 $.
Hướng dẫn giải:
- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\)
- Bước 2: Thay \(z\) và biểu thức đã cho tìm mối quan hệ của \(x,y\) suy ra tập hợp biểu diễn của số phức \(z\).
- Bước 3: Sử dụng mối quan hệ hình học để tìm mô đun số phức cần tìm.
Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là:
Gọi \(G'\left( {x;y;z} \right)\) là trọng tâm của tam giác \(A'B'C'\).
Ta có \(\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0 \Leftrightarrow \left( {\overrightarrow {G'A} + \overrightarrow {AA'} } \right) + \left( {\overrightarrow {G'B} + \overrightarrow {BB'} } \right) + \left( {\overrightarrow {G'C} + \overrightarrow {CC'} } \right) = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {G'A} + \overrightarrow {G'B} + \overrightarrow {G'C} = \overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \).
Suy ra \(G'\) cũng là trọng tâm của tam giác \(ABC\) nên có tọa độ \(\left( {2;\dfrac{4}{3};\dfrac{1}{3}} \right).\)
Hướng dẫn giải:
Nhận xét trọng tâm của hai tam giác \(ABC\) và \(A'B'C'\) rồi suy ra kết luận.
Viết phương trình mặt phẳng $\left( P \right)$ song song với mặt phẳng $\left( Q \right):x + y - z - 2 = 0$ và cách $\left( Q \right)$ một khoảng là \(2\sqrt 3 \) .
Vì $\left( P \right)$ song song với $\left( Q \right)$ nên $\left( P \right):x + y - z + c = 0$ với \(c \ne - 2\) .
Chọn $A\left( {2,0,0} \right)$ thuộc $\left( Q \right)$ ta có
\(d\left( {(P),(Q)} \right) = d\left( {A,(P)} \right) = \dfrac{{|2 + c|}}{{\sqrt 3 }} = 2\sqrt 3 \Leftrightarrow |2 + c| = 6\).
Suy ra $c = 4$ hoặc $c = - 8$.
Hướng dẫn giải:
- Gọi phương trình mặt phẳng \(\left( P \right)\) ở dạng tổng quát với chú ý $\left( P \right)//\left( Q \right) \Rightarrow \overrightarrow {{n_P}} = k.\overrightarrow {{n_Q}} $
- Tìm một điểm \(A\) thuộc mặt phẳng \(\left( Q \right)\) và viết công thức khoảng cách \(d\left( {A,\left( Q \right)} \right)\) và tìm.
- Khoảng cách từ điểm \(M\left( {{x_0},{y_0},{z_0}} \right)\) lên mặt phẳng \(\left( P \right):ax + by + cz + d = 0\) là
\(d\left( {A,\left( P \right)} \right) = \dfrac{{a{x_0} + b{y_0} + c{z_0} + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\left\{ \begin{array}{l}x = t\\y = - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và \(\,{d_2}:\dfrac{x}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 5}}\).
Trong các phương trình sau đây, phương trình nào là phương trình của đường thẳng \({d_3}\) qua \(M\left( {1; - 1;2} \right)\) và vuông góc với cả \({d_1},\,\,{d_2}.\)
Đường \({d_1}\) có VTCP \(\overrightarrow a = \left( {1; - 4;6} \right)\); \({d_2}\) có VTCP \(\overrightarrow b = \left( {2;1; - 5} \right)\).
Vì \({d_3}\) vuông góc với \({d_1};\,\,{d_2}\) nên có véc-tơ chỉ phương \(\overrightarrow u = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {14;17;9} \right)\).
Hướng dẫn giải:
Đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với hai đường thẳng \({d_1},{d_2}\) thì \(d\) có VTCP \(\overrightarrow u = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\)
Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:
Ta có: \(\overrightarrow {OA} = \left( {1; - 2;0} \right),\overrightarrow {AB} = \left( { - 1;3;1} \right)\)
$ \Rightarrow \left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 2\\3\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}1\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 1\end{array}&\begin{array}{l} - 2\\3\end{array}\end{array}} \right|} \right) = \left( { - 2; - 1;1} \right)$
Do đó \(OH = d\left( {O,AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|}} = \dfrac{{\sqrt {{2^2} + {1^2} + {1^2}} }}{{\sqrt {{1^2} + {3^2} + {1^2}} }} = \dfrac{{\sqrt {66} }}{{11}}\)
Hướng dẫn giải:
- Tìm véc tơ chỉ phương \(\overrightarrow u \) của đường thẳng \(AB\).
- Đường cao \(OH\) chính là khoảng cách từ điểm \(O\) đến đường thẳng \(AB\).
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t{\rm{ }}}\\{y = 8 + 4t}\\{z = 3 + 2t}\end{array}} \right.\) và mặt phẳng $\left( P \right):x + y + z - 7 = 0.$ Phương trình đường thẳng \(\Delta '\) là hình chiếu vuông góc của \(\Delta \) trên \(\left( P \right)\) là:
Gọi \(\left( Q \right)\) là mặt phẳng chứa \(\Delta \) và vuông góc với \(\left( P \right)\), suy ra $\left( Q \right):2x + y - 3z + 1 = 0.$
Khi đó \(\Delta '\) cần tìm là giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) nên thỏa mãn hệ $\left\{ \begin{array}{l}x + y + z - 7 = 0\\2x + y - 3z + 1 = 0\end{array} \right..$
Đặt \(z = t,\) ta có phương trình tham số của \(\Delta '\) là \(\left\{ {\begin{array}{*{20}{c}}{x = - 8 + 4t}\\{y = 15 - 5t}\\{z = t{\rm{ }}}\end{array}} \right..\)
Hướng dẫn giải:
- Viết phương trình mặt phẳng \(\left( Q \right)\) chứa \(\Delta \) và vuông góc với \(\left( P \right)\).
- Đường thẳng cần tìm là giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm $M\left( {2;3;3} \right),{\rm{ }}N\left( {2; - 1; - 1} \right),{\rm{ }}P\left( { - 2; - 1;3} \right)$ và có tâm thuộc mặt phẳng \((\alpha ):2x + 3y - z + 2 = 0\).
- Liệt kê các phương trình mặt cầu cho trong 4 đáp án
+ A cho mặt cầu tâm \({I_A}(1, - 1,1)\) và \({R_A} = \sqrt {13} \)
+ B cho mặt cầu tâm \({I_B}(2, - 1,3)\) và \({R_B} = 4\)
+ C cho mặt cầu tâm \({I_C}( - 2,1, - 3)\) và \({R_C} = 2\sqrt 3 \)
+ D cho mặt cầu tâm \({I_D}(1, - 1,1)\) và \({R_D} = \sqrt 5 \)
- Kiểm tra các tâm có thuộc mặt phẳng \((\alpha )\) hay không. Loại được đáp án C.
- Ta thấy\({I_A} \equiv {I_D} = I(1, - 1,1)\), nên ta tính bán kính $R = IM$ rồi so sánh với \({R_A},{R_D}\) .
Có \(IM = \sqrt {{1^2} + {4^2} + {2^2}} = \sqrt {21} \) . Ta thấy \(IM \ne {R_A} \ne {R_D}\). Loại A và D
Hướng dẫn giải:
Xét từng đáp án:
- Xác định tâm mặt cầu và thay vào mặt phẳng.
- Tính bán kính mặt cầu và kiểm tra khoảng cách từ tâm đến các điểm \(A,B,C\) bằng bán kính.
Giải thích thêm:
Tự luận:
\(\overrightarrow {MN} = \left( {0; - 4; - 4} \right)\), \(\overrightarrow {NP} = \left( { - 4;0;4} \right)\)
Gọi (P) và (Q) lần lượt là mặt phẳng trung trực của MN và NP.
Khi đó tâm I của mặt cầu thuộc (P) và (Q)
Ta có:
(P) qua trung điểm A(2;1;1) của MN và nhận vecto \(\overrightarrow {{n_1}} = \left( {0;1;1} \right)\) làm vecto pháp tuyến nên có phương trình:
\(y - 1 + z - 1 = 0 \Leftrightarrow y + z - 2 = 0\)
(Q) qua trung điểm B(0;-1;1) của NP và nhận vecto \(\overrightarrow {{n_2}} = \left( {1;0; - 1} \right)\) làm vecto pháp tuyến nên có phương trình:
\(x - 0 - \left( {z - 1} \right) = 0 \Leftrightarrow x - z + 1 = 0\)
Do I là tâm mặt cầu đi qua 3 điểm M,N,P nên I phải thuộc mặt phẳng trung trực của MN và NP.
Khi đó tọa độ của I là nghiệm của hệ
\(\left\{ \begin{array}{l}2x + 3y - z + 2 = 0\\y + z - 2 = 0\\x - z + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = - 1\\z = 3\end{array} \right.\)
=> I(2;-1;3)
=> R=4
Mặt cầu cần tìm là:
\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 3} \right)^2} = 16\)
\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 2 = 0\)
Mặt cầu $\left( S \right)$ có tâm \(I( - 1;2; - 5)\) cắt mặt phẳng \(\left( P \right):2x - 2y - z + 10 = 0\) theo thiết diện là hình tròn có diện tích \(3\pi \). Phương trình của $\left( S \right)$ là:
Gọi $O$ là tâm của đường tròn thiết diện, $E$ là một điểm thuộc đường tròn.
Ta có: $IO = d\left( {I,(P)} \right);R = IE$
\(IO = d\left( {I,(P)} \right) = \dfrac{{|2.( - 1) - 2.2 + 5 + 10|}}{{\sqrt {{2^2} + {2^2} + 1} }} = 3\)
\(S = 3\pi = \pi .O{E^2} \Leftrightarrow O{E^2} = 3\)
Tam giác $IOE$ vuông tại $O$ nên \({R^2} = I{E^2} = I{O^2} + O{E^2} = 3 + 9 = 12.\)
Suy ra phương trình mặt cầu $\left( S \right)$ là:
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 12\) hay \({x^2} + {y^2} + {z^2} + 2x - 4y + 10z + 18 = 0\)

Hướng dẫn giải:
+ Xác định bán kính mặt cầu $\left( S \right)$
+ Phương trình mặt cầu: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\)
Cho \(y=f(x)\) là hàm số chẵn và liên tục trên \(\mathbb{R}.\) Biết \(\int\limits_{0}^{1}{f(x)\text{d}x=}\frac{1}{2}\int\limits_{1}^{2}{f(x)\text{d}x}=1.\) Giá trị của \(\int\limits_{-2}^{2}{\frac{f(x)}{{{3}^{x}}+1}\text{d}x}\) bằng
Ta có: \(\int\limits_{0}^{1}{f\left( x \right)dx=\frac{1}{2}\int\limits_{1}^{2}{f\left( x \right)dx=1\Rightarrow \int\limits_{0}^{1}{f\left( x \right)dx=1}}}\) và \(\int\limits_{1}^{2}{f\left( x \right)dx=2.}\)
\(\Rightarrow \int\limits_{0}^{1}{f\left( x \right)dx+\int\limits_{1}^{2}{f\left( x \right)dx}=\int\limits_{0}^{2}{f\left( x \right)dx=3.}}\)
Mặt khác: \(\int\limits_{-2}^{2}{\frac{f\left( x \right)}{{{3}^{x}}+1}dx}=\int\limits_{-2}^{0}{\frac{f\left( x \right)}{{{3}^{x}}+1}dx+\int\limits_{0}^{2}{\frac{f\left( x \right)}{{{3}^{x}}+1}dx}}\) và \(y=f\left( x \right)\) là hàm số chẵn, liên tục trên \(R.\)
\(\Rightarrow f\left( -x \right)=f\left( x \right)\ \forall x\in R.\)
Gọi \(I=\int\limits_{-2}^{2}{\frac{f\left( x \right)}{{{3}^{x}}+1}\,\text{d}x}\), đặt \(t=-\,x\Rightarrow \text{d}t=-\,\text{d}x\) và đổi cận \(\left\{ \begin{align} & x=-\,2\,\,\Rightarrow \,\,t=2 \\ & x=2\,\,\Rightarrow \,\,t=-\,2 \\ \end{align} \right..\)
Suy ra \(I=\int\limits_{2}^{-\,2}{\frac{f\left( -t \right)}{{{3}^{-t}}+1}\,\left( -\,\text{d}t \right)}=\int\limits_{-\,2}^{2}{\frac{f\left( t \right)}{\frac{1}{{{3}^{t}}}+1}\,\text{d}t}=\int\limits_{-\,2}^{2}{\frac{{{3}^{x}}f\left( x \right)}{{{3}^{x}}+1}\,\text{d}x}\)
\(\Rightarrow \,\,2I=\int\limits_{-\,2}^{2}{\frac{\left( {{3}^{x}}+1 \right)f\left( x \right)}{{{3}^{x}}+1}\,\text{d}x}=\int\limits_{-\,2}^{2}{f\left( x \right)\,\text{d}x}\)
Do \(f\left( x \right)\) là hàm chẵn nên suy ra \(\int\limits_{-\,2}^{2}{f\left( x \right)\,\text{d}x}=2\int\limits_{0}^{2}{f\left( x \right)\,\text{d}x}\).
Vậy \(I=\int\limits_{0}^{2}{f\left( x \right)\,\text{d}x}=\int\limits_{0}^{1}{f\left( x \right)\,\text{d}x}+\int\limits_{1}^{2}{f\left( x \right)\,\text{d}x}=3.\)
Hướng dẫn giải:
Chọn hàm (hàm chẵn, 2 giả thiết \(f\left( x \right)=a{{x}^{2}}+b\)) hoặc đổi biến số để tính tích phân
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
Ta có \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\Leftrightarrow {{\left( y-3 \right)}^{2}}=4-{{x}^{2}}\Leftrightarrow \left[\begin{align} & y=f\left( x \right)=\sqrt{4-{{x}^{2}}}+3 \\ & y=g\left( x \right)=-\,\sqrt{4-{{x}^{2}}}+3 \\\end{align} \right.\)

Vậy thể tích khối tròn xoay cần tính là \(V=\pi \int\limits_{-\,2}^{2}{{{f}^{2}}\left( x \right)\,\text{d}x}-\pi \int\limits_{-\,2}^{2}{{{g}^{2}}\left( x \right)\,\text{d}x}\)
\(\begin{align} & =\pi \int\limits_{-\,2}^{2}{\left( {{f}^{2}}\left( x \right)-{{g}^{2}}\left( x \right) \right)\,\text{d}x} \\ & =\pi \int\limits_{-\,2}^{2}{\left( {{\left( \sqrt{4-{{x}^{2}}}+3 \right)}^{2}}-{{\left( 3-\sqrt{4-{{x}^{2}}} \right)}^{2}} \right)\,\text{d}x} \\ & =\pi \,\int\limits_{-\,2}^{2}{12\sqrt{4-{{x}^{2}}}\,\text{d}x}=24{{\pi }^{2}}. \\\end{align}\)
Vậy thể tích cần tính là \(V=24{{\pi }^{2}}.\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích khối tròn xoay được quay quanh trục hoành của các đồ thị hàm số : \(y=f\left( x \right);\ x=a;\ x=b\ \ \left( a<b \right)\) là : \(V=\pi \int\limits_{a}^{b}{{{f}^{2}}\left( x \right)}dx.\)
Cho số phức $z$ thỏa mãn $\left| {z - 2} \right| = 2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w = \left( {1 - i} \right)z + i$ là một đường tròn. Tính bán kính $r$ của đường tròn đó
Giả sử $w = a + bi$ . Ta có
\(\begin{array}{l}w = (1 - i)z + i \Leftrightarrow a + bi = (1 - i)z + i\\ \Leftrightarrow a + bi = (1 - i)(z - 2) + i + 2(1 - i)\\ \Leftrightarrow a + bi = (1 - i)(z - 2) + 2 - i\\ \Leftrightarrow (1 - i)(z - 2) = a - 2 + (b + 1)i\\ \Leftrightarrow z - 2 = \dfrac{{a - 2 + (b + 1)i}}{{1 - i}}\\ \Leftrightarrow z - 2 = \dfrac{{\left[ {a - 2 + (b + 1)i} \right](1 + i)}}{2}\\ \Leftrightarrow z - 2 = \dfrac{1}{2}\left[ {a - 2 - b - 1 + (a - 2 + b + 1)i} \right]\\ \Leftrightarrow z - 2 = \dfrac{1}{2}\left[ {a - b - 3 + (a + b - 1)i} \right]\end{array}\)
Theo giả thiết $\left| {z - 2} \right| = 2$ nên ta có \(\begin{array}{l}\dfrac{1}{4}\left[ {{{(a - b - 3)}^2} + {{(a + b - 1)}^2}} \right] = 4 \Leftrightarrow {(a - b - 3)^2} + {(a + b - 1)^2} = 16 \Leftrightarrow 2{a^2} + 2{b^2} + 10 - 8a + 4b = 16\\ \Leftrightarrow {a^2} + {b^2} - 4a + 2b - 3 = 0 \Leftrightarrow {(a - 2)^2} + {(b + 1)^2} = 8\end{array}\)
Tập hợp các điểm trong mặt phẳng tọa độ $Oxy$ biểu diễn số phức $w$ là một đường tròn có bán kính bằng \(2\sqrt 2 \).
Hướng dẫn giải:
Phương pháp tìm tập hợp điểm biểu diễn số phức
Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)
Bước 2: Thay \(z\) vào đề bài \( \Rightarrow \) Sinh ra một phương trình:
+) Đường thẳng: \(Ax + By + C = 0.\)
+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)
+) Parabol: \(y = a.{x^2} + bx + c\)
+) Elip: \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\)
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha \right)\) có phương trình là:
Mặt phẳng \(\left( \alpha \right)\) có VTPT \(\overrightarrow n = \left( {1;1; - 1} \right)\).
Gọi \(B = \Delta \cap d\), suy ra \(B \in d \Rightarrow B\left( {3 + t;3 + 3t;2t} \right)\).
Suy ra đường thẳng \(\Delta \) có VTCP \(\overrightarrow {AB} = \left( {2 + t;1 + 3t;1 + 2t} \right)\).
Vì \(\Delta \parallel \left( \alpha \right)\) nên \(\overrightarrow {AB} .\overrightarrow n = 0 \Leftrightarrow 2 + t + 1 + 3t - 2t - 1 = 0 \Leftrightarrow t = - 1\).
Do đó phương trình \(\Delta :\dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{{ - 2}} = \dfrac{{z + 1}}{{ - 1}}\).
Hướng dẫn giải:
- Gọi \(B = \Delta \cap d\)
- \(\Delta //\left( \alpha \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_\alpha }} = 0\)
Gọi \(F\left( x \right) = \left( {a{x^3} + b{x^2} + cx + d} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^3} + 9{x^2} - 2x + 5} \right){e^x}\). Tính \({a^2} + {b^2} + {c^2} + {d^2}\)
\(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) nên ta có \(F'\left( x \right) = f\left( x \right)\)
Ta có:
\(\begin{array}{l}F'\left( x \right) = \left( {3a{x^2} + 2bx + c} \right){e^x} + \left( {a{x^3} + b{x^2} + cx + d} \right){e^x}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {a{x^3} + \left( {3a + b} \right){x^2} + \left( {2b + c} \right)x + c + d} \right){e^x}\end{array}\)
Do đó \(\left( {a{x^3} + \left( {3a + b} \right){x^2} + \left( {2b + c} \right)x + c + d} \right){e^x} = \left( {2{x^3} + 9{x^2} - 2x + 5} \right){e^x}\)
Đồng nhất hệ số ta có: \(\left\{ \begin{array}{l}a = 2\\3a + b = 9\\2b + c = - 2\\c + d = 5\end{array} \right.\left\{ \begin{array}{l}a = 2\\b = 3\\c = - 8\\d = 13\end{array} \right. \Rightarrow {a^2} + {b^2} + {c^2} + {d^2} = 246\)
Hướng dẫn giải:
+) \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) nên ta có \(F'\left( x \right) = f\left( x \right)\).
+) Sử dụng phương pháp đồng nhất hệ số.
Cho điểm $A(0 ; 8 ; 2)$ và mặt cầu $(S)$ có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm $B(1 ; 1 ; -9)$. Viết phương trình mặt phẳng $(P)$ qua $A$ tiếp xúc với $(S)$ sao cho khoảng cách từ $B$ đến $(P)$ là lớn nhất. Giả sử \(\overrightarrow n = \left( {1;m;n} \right)\) là véctơ pháp tuyến của $(P)$. Lúc đó:
$(S)$ có tâm $I(5;-3;7)$ và bán kính $R= 6\sqrt 2 $
Theo đề bài ta có phương trình $(P)$ có dạng $x+m(y-8)+n(z-2)=0$
Vì $(P)$ tiếp xúc với $(S) $ nên ${\rm{d}}(I,(P)) = \dfrac{{\left| {5 + m( - 3 - 8) + n(7 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \dfrac{{\left| {5 - 11m + 5n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 6\sqrt 2 $
$\begin{array}{l} \Leftrightarrow \left| {5 - 11m + 5n} \right| = 6\sqrt 2 .\sqrt {1 + {m^2} + {n^2}} \\ \Leftrightarrow 25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn = 72(1 + {m^2} + {n^2})\\ \Leftrightarrow 49{m^2} - 110m + 50n - 110mn - 47{n^2} - 47 = 0\\ \Leftrightarrow 49{m^2} - 110m(n + 1) - 47{n^2} + 50n - 47 = 0(1)\\\Delta ' = 3025{(n + 1)^2} - 49( - 47{n^2} + 50n - 47) = 5328{n^2} + 3600n + 5328 > 0\end{array}$
Phương trình (*) luôn có nghiệm
$\begin{array}{l}{\rm{d}}(B,(P)) = \dfrac{{\left| {1 + m(1 - 8) + n( - 9 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \dfrac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }}\\ = > d(B,(P))\max = AB \Leftrightarrow \dfrac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 3\sqrt {19} \Leftrightarrow \sqrt {1 + {m^2} + {n^2}} = \dfrac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }}\end{array}$
Mặt khác $\dfrac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }} = \sqrt {1 + {m^2} + {n^2}} $
$\dfrac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }}$=$\dfrac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }}$
$\begin{array}{l}72(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 171(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)\\ \Leftrightarrow 8(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 19(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)\\ \Leftrightarrow - 1907{m^2} + 493{n^2} + 1978m - 1126n + 3322mn - 467 = 0(2)\end{array}$
Từ (1) và (2) $\Rightarrow m.n= \dfrac{{276}}{{49}}$
Hướng dẫn giải:
- Viết phương trình mặt phẳng \(\left( P \right)\) biết VTPT \(\overrightarrow n = \left( {1;m;n} \right)\) và đi qua \(A\).
- \(\left( P \right)\) tiếp xúc \(\left( S \right) \Leftrightarrow R = d\left( {I,\left( P \right)} \right)\).
- Tìm GTLN của biểu thức \(d\left( {B,\left( P \right)} \right)\) và suy ra đáp án.
Đề thi liên quan
-
Đề kiểm tra học kì 2 - Đề số 1
-
50 câu hỏi
-
90 phút
-
-
Đề kiểm tra học kì 2 - Đề số 2
-
50 câu hỏi
-
90 phút
-
-
Đề kiểm tra học kì 2 - Đề số 4
-
50 câu hỏi
-
90 phút
-
-
Đề kiểm tra học kì 2 - Đề số 5
-
50 câu hỏi
-
90 phút
-