Câu hỏi Đáp án 3 năm trước 97

Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A(2;1;0),\,\,B(1;-1;3)\). Mặt phẳng qua AB và vuông góc với mặt phẳng (P): \(x+3y-2z-1=0\) có phương trình là

A. \(5x-y+z-9=0\).                       

Đáp án chính xác ✅

B. \(-5x-y+z+11=0\).      

C.  \(5x+y-z+11=0\).        

D. \(-5x+y+z+9=0\).

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Gọi mặt phẳng cần tìm là \(\left( \alpha  \right)\).

(P): \(x+3y-2z-1=0\) có một VTPT \(\overrightarrow{{{n}_{(P)}}}\left( 1;3;-2 \right)=\overrightarrow{{{u}_{1}}}\). Vì \(\left( \alpha  \right)\bot (P)\Rightarrow {{\overrightarrow{n}}_{\left( \alpha  \right)}}\bot {{\overrightarrow{n}}_{\left( P \right)}}\)

\(AB\subset \left( \alpha  \right)\Rightarrow {{\overrightarrow{n}}_{\left( \alpha  \right)}}\bot \overrightarrow{AB}=\left( -1;-2;3 \right)=\overrightarrow{u_2}\)

Khi đó, \(\left( \alpha  \right)\)có một vectơ pháp tuyến là: \(\overrightarrow{n}=\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]=(5;-1;1)\)

Phương trình \(\left( \alpha  \right)\): \(5.(x-2)-1.(y-1)+1.(z-0)=0\Leftrightarrow 5x-y+z-9=0\)

Hướng dẫn giải:

Cho \(\overrightarrow{{{u}_{1}}},\overrightarrow{{{u}_{2}}}\) là cặp vectơ chỉ phương của mặt phẳng \(\left( \alpha  \right)\), khi đó \(\overrightarrow{n}=\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]\) là một vectơ pháp tuyến của \(\left( \alpha  \right)\).

\(\overrightarrow {{u_1}}  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow {{u_2}}  = \left( {{x_2};{y_2};{z_2}} \right)\)

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] =\) \( \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}{y_1}\\{y_2}\end{array}&\begin{array}{l}{z_1}\\{z_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{z_1}\\{z_2}\end{array}&\begin{array}{l}{x_1}\\{x_2}\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}{x_1}\\{x_2}\end{array}&\begin{array}{l}{y_1}\\{y_2}\end{array}\end{array}} \right|} \right) =\) \( \left( {{y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1}} \right)\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t{\rm{      }}}\\{y = 8 + 4t}\\{z = 3 + 2t}\end{array}} \right.\) và mặt phẳng $\left( P \right):x + y + z - 7 = 0.$ Phương trình đường thẳng \(\Delta '\) là hình chiếu vuông góc của \(\Delta \) trên \(\left( P \right)\) là:

Xem lời giải » 3 năm trước 113
Câu 2: Trắc nghiệm

Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

Xem lời giải » 3 năm trước 110
Câu 3: Trắc nghiệm

Cho số phức $z$ thỏa mãn $\left| {z - 2} \right| = 2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w = \left( {1 - i} \right)z + i$ là một đường tròn. Tính bán kính $r$ của đường tròn đó

Xem lời giải » 3 năm trước 102
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.

Xem lời giải » 3 năm trước 98
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm $M\left( {2;3;3} \right),{\rm{ }}N\left( {2; - 1; - 1} \right),{\rm{ }}P\left( { - 2; - 1;3} \right)$ và có tâm thuộc mặt phẳng \((\alpha ):2x + 3y - z + 2 = 0\).

Xem lời giải » 3 năm trước 98
Câu 6: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, mặt cầu $\left( S \right)$ có tâm $I\left( {1,2, - 3} \right)$ và đi qua điểm $A\left( {1,0,4} \right)$ có phương trình là

Xem lời giải » 3 năm trước 96
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng

\({d_1}:\left\{ \begin{array}{l}x = t\\y =  - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và \(\,{d_2}:\dfrac{x}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 5}}\).

Trong các phương trình sau đây, phương trình nào là phương trình của đường thẳng \({d_3}\) qua \(M\left( {1; - 1;2} \right)\) và vuông góc với cả \({d_1},\,\,{d_2}.\)

Xem lời giải » 3 năm trước 96
Câu 8: Trắc nghiệm

Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).

Xem lời giải » 3 năm trước 96
Câu 9: Trắc nghiệm

Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)

Xem lời giải » 3 năm trước 96
Câu 10: Trắc nghiệm

Viết phương trình mặt phẳng $\left( P \right)$  song song với mặt phẳng $\left( Q \right):x + y - z - 2 = 0$  và cách $\left( Q \right)$  một khoảng là \(2\sqrt 3 \) .

Xem lời giải » 3 năm trước 95
Câu 11: Trắc nghiệm

Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:

Xem lời giải » 3 năm trước 95
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha  \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha  \right)\) có phương trình là:

Xem lời giải » 3 năm trước 94
Câu 13: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f\left( x \right)=3\cos x+\dfrac{1}{{{x}^{2}}}\) trên \(\left( 0;\,+\infty \right)\).

Xem lời giải » 3 năm trước 89
Câu 14: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B(0;3;1)\). Tọa độ trung điểm của đoạn thẳng AB là

Xem lời giải » 3 năm trước 87
Câu 15: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {2;2;0} \right)\) và \(D\left( {0;m;0} \right)\). Điều kiện cần và đủ của \(m\) để khoảng cách giữa hai đường thẳng \(AB\) và \(CD\) bằng \(2\) là:

Xem lời giải » 3 năm trước 86

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »