Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
A.
\({x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 8 = 0.\)
B.
\({(x + 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 9.\)
C.
\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0\)
D.
\(3{x^2} + 3{y^2} + 3{z^2} - 6x + 12y - 24z + 16 = 0\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Phương trình đáp án B có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) với \(a = - 1,b = 2,c = 1\) và \(R = 3\) là phương trình mặt cầu.
Phương trình đáp án A có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = - 1,b = - 1,c = - 1,d = - 8\) có \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \) là một phương trình mặt cầu.
Xét phương án C có
\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\).
Phương trình có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = 1,b = - \dfrac{1}{2},c = - \dfrac{1}{2},d = 8\) có \({a^2} + {b^2} + {c^2} - d = 1 + \dfrac{1}{4} + \dfrac{1}{4} - 8 < 0.\)
Không phải là phương trình mặt cầu.
Hướng dẫn giải:
Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) là phương trình mặt cầu là \({a^2} + {b^2} + {c^2} - d > 0\)
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì xác định sai số \(d = 8\) dẫn đến tính \({a^2} + {b^2} + {c^2} - d < 0\) là sai.
Phương trình đáp án B có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) với \(a = - 1,b = 2,c = 1\) và \(R = 3\) là phương trình mặt cầu.
Phương trình đáp án A có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = - 1,b = - 1,c = - 1,d = - 8\) có \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \) là một phương trình mặt cầu.
Xét phương án C có
\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\).
Phương trình có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = 1,b = - \dfrac{1}{2},c = - \dfrac{1}{2},d = 8\) có \({a^2} + {b^2} + {c^2} - d = 1 + \dfrac{1}{4} + \dfrac{1}{4} - 8 < 0.\)
Không phải là phương trình mặt cầu.
Hướng dẫn giải:
Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) là phương trình mặt cầu là \({a^2} + {b^2} + {c^2} - d > 0\)
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì xác định sai số \(d = 8\) dẫn đến tính \({a^2} + {b^2} + {c^2} - d < 0\) là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t{\rm{ }}}\\{y = 8 + 4t}\\{z = 3 + 2t}\end{array}} \right.\) và mặt phẳng $\left( P \right):x + y + z - 7 = 0.$ Phương trình đường thẳng \(\Delta '\) là hình chiếu vuông góc của \(\Delta \) trên \(\left( P \right)\) là:
Cho số phức $z$ thỏa mãn $\left| {z - 2} \right| = 2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w = \left( {1 - i} \right)z + i$ là một đường tròn. Tính bán kính $r$ của đường tròn đó
Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm $M\left( {2;3;3} \right),{\rm{ }}N\left( {2; - 1; - 1} \right),{\rm{ }}P\left( { - 2; - 1;3} \right)$ và có tâm thuộc mặt phẳng \((\alpha ):2x + 3y - z + 2 = 0\).
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A(2;1;0),\,\,B(1;-1;3)\). Mặt phẳng qua AB và vuông góc với mặt phẳng (P): \(x+3y-2z-1=0\) có phương trình là
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
Trong không gian với hệ tọa độ $Oxyz$, mặt cầu $\left( S \right)$ có tâm $I\left( {1,2, - 3} \right)$ và đi qua điểm $A\left( {1,0,4} \right)$ có phương trình là
Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).
Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\left\{ \begin{array}{l}x = t\\y = - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và \(\,{d_2}:\dfrac{x}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 5}}\).
Trong các phương trình sau đây, phương trình nào là phương trình của đường thẳng \({d_3}\) qua \(M\left( {1; - 1;2} \right)\) và vuông góc với cả \({d_1},\,\,{d_2}.\)
Viết phương trình mặt phẳng $\left( P \right)$ song song với mặt phẳng $\left( Q \right):x + y - z - 2 = 0$ và cách $\left( Q \right)$ một khoảng là \(2\sqrt 3 \) .
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha \right)\) có phương trình là:
Tìm nguyên hàm của hàm số \(f\left( x \right)=3\cos x+\dfrac{1}{{{x}^{2}}}\) trên \(\left( 0;\,+\infty \right)\).
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B(0;3;1)\). Tọa độ trung điểm của đoạn thẳng AB là
Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {2;2;0} \right)\) và \(D\left( {0;m;0} \right)\). Điều kiện cần và đủ của \(m\) để khoảng cách giữa hai đường thẳng \(AB\) và \(CD\) bằng \(2\) là: