Câu hỏi Đáp án 3 năm trước 71

Cho số phức \({\rm{w}}\)và hai số thực \(a,b\). Biết \({z_1} = {\rm{w}} + 2i\) và \({z_2} = 2w - 3\) là 2 nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\).

A.

\(T = 2\sqrt {13} \).    


B.

\(T = \dfrac{{2\sqrt {97} }}{3}\).


Đáp án chính xác ✅

C.

\(T = \dfrac{{2\sqrt {85} }}{3}\).        


D.

\(T = 4\sqrt {13} \).


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Đặt \({\rm{w}} = x + yi\). Khi đó:

\(\begin{array}{l}{z_1} = x + yi + 2i = x + \left( {y + 2} \right)i;{z_2} = 2(x + yi) - 3 = \left( {2x - 3} \right) + 2yi \\ \Rightarrow {z_2} = \left( {2x - 3} \right) - 2yi\\{z_1} = \overline {{z_2}}  \Leftrightarrow \left\{ \begin{array}{l}x = 2x - 3\\y + 2 =  - 2y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y =  - \dfrac{2}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{z_1} = 3 + \dfrac{4}{3}i\\{z_2} = 3 - \dfrac{4}{3}i\end{array} \right. \\ \Rightarrow T = \left| {{z_1}} \right| + \left| {{z_2}} \right| = \sqrt {{3^2} + {{\left( {\dfrac{4}{3}} \right)}^2}}  + \sqrt {{3^2} + {{\left( { - \dfrac{4}{3}} \right)}^2}}  = \dfrac{{2\sqrt {97} }}{3}\end{array}\)

Hướng dẫn giải:

Nếu \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + az + b = 0\) thì \({z_1} = \overline {{z_2}} \).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t{\rm{      }}}\\{y = 8 + 4t}\\{z = 3 + 2t}\end{array}} \right.\) và mặt phẳng $\left( P \right):x + y + z - 7 = 0.$ Phương trình đường thẳng \(\Delta '\) là hình chiếu vuông góc của \(\Delta \) trên \(\left( P \right)\) là:

Xem lời giải » 3 năm trước 113
Câu 2: Trắc nghiệm

Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

Xem lời giải » 3 năm trước 110
Câu 3: Trắc nghiệm

Cho số phức $z$ thỏa mãn $\left| {z - 2} \right| = 2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w = \left( {1 - i} \right)z + i$ là một đường tròn. Tính bán kính $r$ của đường tròn đó

Xem lời giải » 3 năm trước 102
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm $M\left( {2;3;3} \right),{\rm{ }}N\left( {2; - 1; - 1} \right),{\rm{ }}P\left( { - 2; - 1;3} \right)$ và có tâm thuộc mặt phẳng \((\alpha ):2x + 3y - z + 2 = 0\).

Xem lời giải » 3 năm trước 99
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.

Xem lời giải » 3 năm trước 99
Câu 6: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm \(A(2;1;0),\,\,B(1;-1;3)\). Mặt phẳng qua AB và vuông góc với mặt phẳng (P): \(x+3y-2z-1=0\) có phương trình là

Xem lời giải » 3 năm trước 97
Câu 7: Trắc nghiệm

Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)

Xem lời giải » 3 năm trước 97
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng

\({d_1}:\left\{ \begin{array}{l}x = t\\y =  - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và \(\,{d_2}:\dfrac{x}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 5}}\).

Trong các phương trình sau đây, phương trình nào là phương trình của đường thẳng \({d_3}\) qua \(M\left( {1; - 1;2} \right)\) và vuông góc với cả \({d_1},\,\,{d_2}.\)

Xem lời giải » 3 năm trước 96
Câu 9: Trắc nghiệm

Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).

Xem lời giải » 3 năm trước 96
Câu 10: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, mặt cầu $\left( S \right)$ có tâm $I\left( {1,2, - 3} \right)$ và đi qua điểm $A\left( {1,0,4} \right)$ có phương trình là

Xem lời giải » 3 năm trước 96
Câu 11: Trắc nghiệm

Viết phương trình mặt phẳng $\left( P \right)$  song song với mặt phẳng $\left( Q \right):x + y - z - 2 = 0$  và cách $\left( Q \right)$  một khoảng là \(2\sqrt 3 \) .

Xem lời giải » 3 năm trước 95
Câu 12: Trắc nghiệm

Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:

Xem lời giải » 3 năm trước 95
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha  \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha  \right)\) có phương trình là:

Xem lời giải » 3 năm trước 94
Câu 14: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f\left( x \right)=3\cos x+\dfrac{1}{{{x}^{2}}}\) trên \(\left( 0;\,+\infty \right)\).

Xem lời giải » 3 năm trước 89
Câu 15: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B(0;3;1)\). Tọa độ trung điểm của đoạn thẳng AB là

Xem lời giải » 3 năm trước 87

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »