Đề kiểm tra học kì 2 môn Toán - Lớp 12

Đề kiểm tra học kì 2 - Đề số 4

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 596 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 145386

Tích phân \(\int\limits_{1}^{3}{{{e}^{x}}dx}\) bằng:

Xem đáp án
Đáp án đúng: b

Ta có: \(\int\limits_{1}^{3}{{{e}^{x}}dx}=\left. {{e}^{x}} \right|_{1}^{3}={{e}^{3}}-e.\)

Hướng dẫn giải:

Sử dụng công thức tính tích phân của hàm cơ bản.

Câu 2: Trắc nghiệm ID: 145387

Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm

$A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)$. Gọi $H\left( {a;b;c} \right)$ là trực tâm của tam giác \(ABC\). Giá trị của $a + b + c$ bằng:

Xem đáp án
Đáp án đúng: a

Ta có $\left\{ \begin{array}{l}\overrightarrow {AH}  = \left( {a - 1;b - 2;c + 1} \right)\\\overrightarrow {BH}  = \left( {a - 2;b - 1;c - 1} \right)\end{array} \right.$ và $\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( {1; - 1;2} \right)\\\overrightarrow {AC}  = \left( { - 1; - 1;3} \right)\\\overrightarrow {BC}  = \left( { - 2;0;1} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1; - 5; - 2} \right)$.

Do $H$ là trực tâm của tam giác \(ABC\)

$ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AH}  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2\left( {a - 1} \right) + \left( {c + 1} \right) = 0\\ - 1\left( {a - 2} \right) - 1\left( {b - 1} \right) + 3\left( {c - 1} \right) = 0\\ - 1\left( {a - 1} \right) - 5\left( {b - 2} \right) - 2\left( {c + 1} \right) = 0\end{array} \right.$

                $ \Leftrightarrow \left\{ \begin{array}{l} - 2a + c =  - 3\\ - a - b + 3c = 0\\ - a - 5b - 2c =  - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\\c = 1\end{array} \right.$.

Do đó $a + b + c = 4$.

Hướng dẫn giải:

Điều kiện để \(H\) là trực tâm của tam giác là $\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AH}  = 0\end{array} \right.$

Câu 3: Trắc nghiệm ID: 145388

Số phức $z$ thỏa mãn $\left| z \right| + z = 0$. Khi đó:

Xem đáp án
Đáp án đúng: c

Đặt $z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $

Ta có: $\left| z \right| + z = 0 \Leftrightarrow \sqrt {{a^2} + {b^2}}  + a + bi = 0 + 0i$

$ \Rightarrow \left\{ \begin{array}{l}b = 0\\\sqrt {{a^2} + {b^2}}  + a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\\left| a \right| + a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\a \le 0\end{array} \right.$

Hướng dẫn giải:

Đặt $z = a + bi$ , tính $\left| z \right|$ sau đó thay vào phương trình $\left| z \right| + z = 0$. Từ đó tìm được $a$ và $b$

Câu 4: Trắc nghiệm ID: 145389

Trong các tích phân sau, tích phân nào có giá trị bằng \(2\)?

Xem đáp án
Đáp án đúng: b

+) $\int\limits_1^2 {{e^x}dx} = \left. {{e^x}} \right|_1^2 = {e^2} - e$

+) \(\int\limits_0^1 {2dx}  = \left. {2x} \right|_0^1 = 2\),

+) \(\int\limits_0^1 {xdx}  = \left. {\dfrac{{{x^2}}}{2}} \right|_0^1 = \dfrac{1}{2}\)

+) \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  = \left. { - \cos x} \right|_0^{\dfrac{\pi }{2}} = 1\)

Vậy chỉ có đáp án B là có tích phân bằng \(2\).

Hướng dẫn giải:

Tính tích phân từng đáp án và dùng phương pháp loại trừ, sử dụng công thức nguyên hàm hàm số cơ bản:

\(\int {dx = x + C} \), \(\int {\sin xdx =  - \cos x + C} \), \(\int {{x^\alpha }dx = \dfrac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C} \) và công thức tích phân \(\int\limits_a^b {f\left( x \right)dx}  = F\left( b \right) - F\left( a \right)\)

Câu 5: Trắc nghiệm ID: 145390

Khoảng cách giữa hai đường thẳng \({d_1}:\dfrac{x}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{3},{d_2}:\dfrac{{x + 1}}{1} = \dfrac{y}{3} = \dfrac{{z + 1}}{{ - 2}}\) là:

Xem đáp án
Đáp án đúng: a

Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {0;1;0} \right)\) và có VTCP \(\overrightarrow {{u_1}}  = \left( {2; - 1;3} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;0; - 1} \right)\) và có VTCP \(\overrightarrow {{u_2}}  = \left( {1;3; - 2} \right)\).

Khi đó \(\overrightarrow {{M_1}{M_2}}  = \left( { - 1; - 1; - 1} \right),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\3\end{array}&\begin{array}{l}3\\ - 2\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 2\end{array}&\begin{array}{l}2\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\1\end{array}&\begin{array}{l} - 1\\3\end{array}\end{array}} \right|} \right) = \left( { - 7;7;7} \right)\)

Vậy \(d\left( {{d_1},{d_2}} \right) = \dfrac{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} } \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}} = \dfrac{{\left| {\left( { - 7} \right).\left( { - 1} \right) + 7.\left( { - 1} \right) + 7.\left( { - 1} \right)} \right|}}{{\sqrt {{7^2} + {7^2} + {7^2}} }} = \dfrac{1}{{\sqrt 3 }}\)

Hướng dẫn giải:

- Tìm hai điểm đi qua của hai đường thẳng.

- Tìm các VTCP của hai đường thẳng.

- Sử dụng công thức tính khoảng cách giữa hai đường thẳng \(d\left( {\Delta ,\Delta '} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)

Câu 6: Trắc nghiệm ID: 145391

Cho số phức $z = 1 + \sqrt {3}i $. Khi đó

Xem đáp án
Đáp án đúng: d

Ta có: $z = 1 + \sqrt 3 i \Rightarrow \dfrac{1}{z} = \dfrac{1}{{1 + \sqrt 3 i}} = \dfrac{{1 - \sqrt 3 i}}{{(1 - \sqrt 3 i)(1 + \sqrt 3 i)}} $

$= \dfrac{{1 - \sqrt 3 i}}{{{1^2} - {{(\sqrt 3 i)}^2}}} = \dfrac{{1 - \sqrt 3 i}}{4} = \dfrac{1}{4} - \dfrac{{\sqrt 3 }}{4}i$

Hướng dẫn giải:

Cho số phức  $ z = a + bi\Rightarrow \dfrac{1}{z} = \dfrac{1}{{a + bi}} = \dfrac{{a - bi}}{{(a - bi)(a + bi)}} = \dfrac{{a - bi}}{{{a^2} - {{(bi)}^2}}} = \dfrac{{a - bi}}{{{a^2} + {b^2}}}$

Giải thích thêm:

Một số em thường nhầm khi tính toán $1^2-(\sqrt{3}i)^2=1-3=-2$ là sai.

Câu 7: Trắc nghiệm ID: 145392

Tìm nguyên hàm của hàm số \(f\left( x \right)=3\cos x+\dfrac{1}{{{x}^{2}}}\) trên \(\left( 0;\,+\infty \right)\).

Xem đáp án
Đáp án đúng: b

Ta có \(\int {f\left( x \right){\text{d}}x} = \int {\left( {3\cos x + \dfrac{1}{{{x^2}}}} \right){\text{d}}x} = 3\sin x - \dfrac{1}{x} + C\)

Câu 8: Trắc nghiệm ID: 145393

Cho tam giác \(ABC\) có \(A\left( {0;0;1} \right)\), \(B\left( {0; - 1;0} \right)\) và \(C\left( {2;1; - 2} \right)\). Gọi \(G\) là trọng tâm tam giác. Phương trình đường thẳng \(AG\) là:

Xem đáp án
Đáp án đúng: d

Đường thẳng \(AG\) cũng là đường thẳng \(AM\) với \(M\) là trung điểm của \(BC\).

Ta có: \(M\left( {1;0; - 1} \right)\) là trung điểm của \(BC\) nên đường thẳng \(AG\) đi qua \(A\left( {0;0;1} \right)\) và nhận \(\overrightarrow {AM}  = \left( {1;0; - 2} \right)\) làm VTCP.

Do đó \(AG:\left\{ \begin{array}{l}x = t\\y = 0\\z = 1 - 2t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Hướng dẫn giải:

Đường thẳng \(AG\) cũng là đường thẳng \(AM\) với \(M\) là trung điểm của \(BC\).

Câu 9: Trắc nghiệm ID: 145394

Viết phương trình mặt phẳng $\left( P \right)$  đi qua điểm $M\left( {1;0; - 2} \right)$ và vuông góc với hai mặt phẳng $\left( Q \right),\left( R \right)$  cho trước với $\left( Q \right):x + 2y - 3z + 1 = 0$  và $\left( {{\rm{ }}R} \right):2x - 3y + z + 1 = 0$ .

Xem đáp án
Đáp án đúng: c

Có \(\overrightarrow {{n_Q}}  = (1,2, - 3)\)  và \(\overrightarrow {{n_R}}  = (2, - 3,1)\). Suy ra \(\vec n = ( - 7, - 7, - 7)\). Chọn \(\vec n' = (1,1,1)\) làm vectơ pháp tuyến.

Ta có phương trình $\left( P \right)$ là

\((x - 1) + (y - 0) + (z + 2) = 0 \Leftrightarrow x + y + z + 1 = 0\)

Cách tính tích có hướng bằng CASIO fx 570 vn plus:

Bước 1: Nhập các vecto

MODE 8->1->1. Nhập vecto thứ nhất vào.

MODE 8->2->1. Nhập vecto thứ nhất vào.

Bước 2: Tính tích có hướng

Ấn AC để ra màn hình. Ấn (SHIFT 5 -> 3) và (SHIFT 5 ->4) và ấn “=”

Hướng dẫn giải:

Phương trình mặt phẳng $\left( P \right)$ vuông góc với hai mặt phẳng $\left( Q \right)$ và $\left( R \right)$ nên nhận \(\vec n = \left[ {\overrightarrow {{n_R}} ,\overrightarrow {{n_Q}} } \right]\) là vectơ pháp tuyến.

Câu 10: Trắc nghiệm ID: 145395

Tìm điểm $M$ biểu diễn số phức \(z = i - 2\)

Xem đáp án
Đáp án đúng: c

$z = i - 2 =  - 2 + i$ nên điểm biểu diễn là $M\left( { - 2;1} \right)$ 

Hướng dẫn giải:

Điểm biều diễn của số phức $z = a + bi$ là $M\left( {a;b} \right)$

Giải thích thêm:

Một số em sẽ chọn đáp án A vì không đưa số phức \(z\) về dạng \(a + bi\).

Câu 11: Trắc nghiệm ID: 145396

 Với cách đổi biến \(u=\sqrt{1+3\ln x}\) thì tích phân \(\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{1+3\ln x}}}dx\) trở thành: 

Xem đáp án
Đáp án đúng: b

Đổi cận: \(\left\{ \begin{align} & x=1\Rightarrow u=1 \\ & x=e\Rightarrow u=2 \\ \end{align} \right..\)

Ta có: \(u=\sqrt{1+3\ln x}\Rightarrow {{u}^{2}}=1+3\ln x\Rightarrow \ln x=\frac{{{u}^{2}}-1}{3}.\)

\(\begin{align} & u=\sqrt{1+3\ln x}\Rightarrow du=\left( \sqrt{1+3\ln x} \right)'dx=\frac{\left( 1+3\ln x \right)'}{2\sqrt{1+3\ln x}}dx=\frac{3}{2x\sqrt{1+3\ln x}}dx. \\ & \Rightarrow \frac{1}{x\sqrt{1+3\ln x}}dx=\frac{2}{3}du \\ \end{align}\) \(\Rightarrow \int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{1+3\ln x}}}dx=\int\limits_{1}^{2}{\frac{{{u}^{2}}-1}{3}.\frac{2}{3}du=\frac{2}{9}\int\limits_{1}^{2}{\left( {{u}^{2}}-1 \right)du.}}\)

Hướng dẫn giải:

 +) Đổi cận từ x sang u.

+) Áp dụng các công thức tính đạo hàm cơ bản và đạo hàm của hàm hợp để tính \(du\) và thế vào biểu thức \(f\left( x \right)\) lấy tích phân.

Giải thích thêm:

HS dễ bị nhầm vì không đổi cận.

Câu 12: Trắc nghiệm ID: 145397

Trong các khẳng định sau, khẳng định nào sai ?

Xem đáp án
Đáp án đúng: c

Ta có \(\int{\dfrac{1}{x}\,\text{d}x}=\ln \left| x \right|+C\ne \ln x+C.\)

Câu 13: Trắc nghiệm ID: 145398

Trong không gian $Oxyz$, cho mặt phẳng $(P):$ \(2x-y+3z-2=0\). Mặt phẳng (P) có một vecto pháp tuyến là

Xem đáp án
Đáp án đúng: b

Mặt phẳng (P) : \(2x-y+3z-2=0\) có một vecto pháp tuyến là \(\overrightarrow{n}=(2;-1;3)\).

Hướng dẫn giải:

Mặt phẳng \(\left( P \right):\,\,Ax+By+Cz+D=0\,\,\left( {{A}^{2}}+{{B}^{2}}+{{C}^{2}}>0 \right)\) có 1 VTPT là \(\overrightarrow{n}=\left( A;B;C \right)\)

Câu 14: Trắc nghiệm ID: 145399

Cho số phức \(z\) thỏa mãn \(\left| z \right| = 1\) và điểm \(A\) trong hình vẽ bên là điểm biểu diễn của \(z\). Biết rằng trong hình vẽ bên, điểm biểu diễn của số phức $w = \dfrac{1}{{iz}}$ là một trong bốn điểm \(M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q\). Khi đó điểm biểu diễn của số phức $w$ là

Đề kiểm tra học kì 2 - Đề số 4 - ảnh 1
Xem đáp án
Đáp án đúng: c

Gọi \(z = x + yi{\rm{ }}\left( {x;{\rm{ }}y \in \mathbb{R}} \right).\) Từ giả thiết, ta có \(\left\{ \begin{array}{l}{x^2} + {y^2} = 1\\x > 0;{\rm{ }}y > 0\end{array} \right..\)

Ta có $w = \dfrac{1}{{iz}} =  - \dfrac{i}{z} =  - \dfrac{i}{{x + yi}} =  - \dfrac{{i\left( {x - yi} \right)}}{{\left( {x + yi} \right)\left( {x - yi} \right)}} =  - \dfrac{{y + xi}}{{{x^2} + {y^2}}} =  - \,y - xi.$

Vì $x > 0,{\rm{ }}y > 0$ nên điểm biểu diễn số phức $w$ có tọa độ là $\left( { - \,y; - \,x} \right)$ (đều có hoành độ và tung độ âm). Đồng thời $\left| w \right| = \sqrt {{{\left( { - y} \right)}^2} + {{\left( { - x} \right)}^2}}  = 1 = \left| z \right|.$ Suy ra điểm biểu diễn của số phức $w$ nằm trong góc phần tư thứ III và cách gốc tọa độ \(O\) một khoảng bằng \(OA.\) Quan sát hình vẽ ta thấy có điểm \(P\) thỏa mãn.

Hướng dẫn giải:

- Gọi \(z = x + yi{\rm{ }}\left( {x;{\rm{ }}y \in \mathbb{R}} \right).\)

- Tìm \(w\) và đối chiếu các đáp án.

Câu 15: Trắc nghiệm ID: 145400

 Trong không gian với hệ tọa độ \(Oxyz,\) cho hai mặt phẳng \(\left( P \right):3x+y+z-5=0\) và \(\left( Q \right):x+2y+z-4=0.\) Khi đó, giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) có phương trình là 

Xem đáp án
Đáp án đúng: d

Ta có : \(\overrightarrow{{{n}_{\left( P \right)}}}=\left( 3;\ 1;\ 1 \right),\ \ \overrightarrow{{{n}_{\left( Q \right)}}}=\left( 1;\ 2;\ 1 \right).\)

Gọi \(d\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right).\)

Ta có \(\left\{ \begin{align} & {{{\vec{u}}}_{d}}\bot {{{\vec{n}}}_{\left( P \right)}} \\ & {{{\vec{u}}}_{d}}\bot {{{\vec{n}}}_{\left( Q \right)}} \\ \end{align} \right.\Rightarrow \,\,{{\vec{u}}_{d}}=\left[ {{{\vec{n}}}_{\left( P \right)}};{{{\vec{n}}}_{\left( Q \right)}} \right]=\)\(\left( -\,1;-\,2;5 \right)\)

Xét hệ \(\left\{ \begin{align} & 3x+y+z-5=0 \\ & x+2y+z-4=0 \\ \end{align} \right.,\)

Chọn \(x = 0 \Rightarrow \,\,\left\{ \begin{array}{l}
y + z = 5\\
2y + z = 4
\end{array} \right. \Leftrightarrow \,\,\left\{ \begin{array}{l}
y = - \,1\\
z = 6
\end{array} \right. \Rightarrow M\left( {0; - 1;6} \right) \in d.\)

Vậy phương trình đường thẳng cần tìm là \(d:\left\{ \begin{align} & x=t \\ & y=-\,1+2t \\ & z=6-5t \\ \end{align} \right..\)

Hướng dẫn giải:

Ứng dụng tích có hướng để tìm vectơ chỉ phương của đường thẳng giao tuyến và giải hệ phương trình để tìm tọa độ giao điểm của hai mặt phẳng

Câu 16: Trắc nghiệm ID: 145401

Trong không gian với hệ tọa độ \(Oxyz\), mặt cầu tâm $I\left( {6,3, - 4} \right)$ tiếp xúc với $Ox$ có bán kính $R$ bằng:

Xem đáp án
Đáp án đúng: b

Bán kính $R = d\left[ {I,Ox} \right] = \sqrt {y_I^2 + z_I^2}  = 5$.

Hướng dẫn giải:

Mặt cầu tiếp xúc \(Ox\) nếu \(d\left( {I,Ox} \right) = R\).

Câu 17: Trắc nghiệm ID: 145402

Cho \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng:

Xem đáp án
Đáp án đúng: d

Ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{B}{A} = \dfrac{{ - 2i}}{1} =  - 2i\\{z_1}{z_2} = \dfrac{C}{A} = \dfrac{i}{1} = i\end{array} \right.\)

Vậy \({z_1} + {z_2} =  - 2i\).

Hướng dẫn giải:

Sử dụng định lý Vi-et cho phương trình bậc hai: \(\left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{B}{A}\\{z_1}{z_2} = \dfrac{C}{A}\end{array} \right.\)

Giải thích thêm:

Một số em chọn nhầm đáp án A vì không nhớ đúng công thức tổng hai nghiệm.

Câu 18: Trắc nghiệm ID: 145403

Gọi $M$ và $N$ lần lượt là điểm biểu diễn của các số phức ${z_1};{z_2}$ khác $0$. Khi đó khẳng định nào sau đây sai ?

Đề kiểm tra học kì 2 - Đề số 4 - ảnh 1
Xem đáp án
Đáp án đúng: c

Ta có: $\left| {{z_1} + {z_2}} \right| = MN$ là khẳng định sai vì dựa vào đồ thị ta có: $\left| {{z_1} - {z_2}} \right| = MN$

Hướng dẫn giải:

Dựa vào đồ thị đề bài cho để tìm ra phương án sai.

Câu 19: Trắc nghiệm ID: 145404

Trong không gian $Oxyz$, điểm nào dưới đây nằm trên mặt phẳng $(P): 2x – y + z – 2 = 0$?

Xem đáp án
Đáp án đúng: b

Thay tọa độ điểm \(N\) vào phương trình mặt phẳng \((P)\) ta có \(2.1 – (–1) – 1 – 2 = 0\), vậy điểm \(N\) thuộc mặt phẳng \((P)\).

Hướng dẫn giải:

Thay tọa độ các điểm ở từng đáp án vào phương trình mặt phẳng (P) và rút ra kết luận. Điểm thuộc mặt phẳng (P) phải là điểm thỏa mãn phương trình mặt phẳng (P).

Câu 20: Trắc nghiệm ID: 145405

Chọn kết luận đúng:

Xem đáp án
Đáp án đúng: b

Số phức \( - 3\) có hai căn bậc hai là \( \pm i\sqrt 3 \) vì \({\left( { \pm i\sqrt 3 } \right)^2} =  - 3\).

Hướng dẫn giải:

Số phức \(w = x + yi\left( {x,y \in R} \right)\) là căn bậc hai của số phức \(z = a + bi\) nếu \({w^2} = z\).

Câu 21: Trắc nghiệm ID: 145406

Trong không gian \(Oxyz,\) cho mặt cầu \((S):{{(x-1)}^{2}}+{{(y-2)}^{2}}+{{(z+1)}^{2}}=6,\) tiếp xúc với hai mặt phẳng \((P):x+y+2z\,+\,5=0,\,\,(Q):2x-y+z\,-\,5=0\) lần lượt tại các tiếp điểm \(A,\,\,B.\) Độ dài đoạn thẳng \(AB\) là

Xem đáp án
Đáp án đúng: d

Xét \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=6\) có tâm \(I\left( 1;2;-\,1 \right),\) bán kính \(R=\sqrt{6}.\)

Gọi \(M\) là giao điểm của \(\left( P \right)\) và \(\left( Q \right)\) sao cho \(MAIB\) đồng phẳng.

Ta có \(\cos \widehat{AMB}=\cos \widehat{\left( P \right);\left( Q \right)}=\frac{\left| {{{\vec{n}}}_{\left( P \right)}}.{{{\vec{n}}}_{\left( Q \right)}} \right|}{\left| {{{\vec{n}}}_{\left( P \right)}} \right|.\left| {{{\vec{n}}}_{\left( Q \right)}} \right|}=\frac{1}{2}\Rightarrow \,\,\widehat{AMB}={{60}^{0}}\Rightarrow \,\,\widehat{AIB}={{120}^{0}}.\)

Tam giác \(IAB\) cân tại \(I,\) có \(AB=\sqrt{I{{A}^{2}}+I{{B}^{2}}-2.IA.IB.\cos \widehat{AIB}}=3\sqrt{2}.\)

Hướng dẫn giải:

Đưa về bài toán đường tròn tiếp xúc với hai đường thẳng cắt nhau, sử dụng bài toán hình phẳng lớp 9 để tìm AB thông qua dữ kiện góc

Câu 22: Trắc nghiệm ID: 145407

Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:

Xem đáp án
Đáp án đúng: b

Đặt u = lnx \( \Rightarrow du = \dfrac{{dx}}{x}\) và \(x = {e^u}\).

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow u = 0\\x = e \Rightarrow u = 1\end{array} \right.\)

Khi đó ta có: \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx}  = \int\limits_0^1 {\dfrac{{1 - u}}{{{e^u}}}du}  = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}du} \)

Hướng dẫn giải:

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Giải thích thêm:

Một số em sau khi tính được \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}du} \) vội vàng kết luận đáp án C mà không chú ý cận.

Câu 23: Trắc nghiệm ID: 145408

Giả sử \(A,B\) là các hằng số của hàm số \(f\left( x \right) = A\sin \pi x + B{x^2}\). Biết \(\int\limits_0^2 {f\left( x \right)dx}  = 4\), giá trị của \(B\) là:

Xem đáp án
Đáp án đúng: c

Ta có: $\int\limits_0^2 {f\left( x \right)dx}  = 4 \Leftrightarrow \int\limits_0^2 {\left( {A\sin \pi x + B{x^2}} \right)dx}  = 4 $

$\Leftrightarrow \left. {\left( { - \dfrac{A}{\pi }\cos \pi x + \dfrac{B}{3}{x^3}} \right)} \right|_0^2 = 4 \Leftrightarrow \dfrac{B}{3}{.2^3} = 4 \Leftrightarrow B = \dfrac{3}{2}$

Hướng dẫn giải:

Sử dụng bảng nguyên hàm các hàm sơ cấp để tính tích phân hàm \(f\left( x \right)\) từ \(0\) đến \(2\).

Giải thích thêm:

Một số HS tính nhầm nguyên hàm \(\int {B{x^2}dx}  = 2Bx\) dẫn đến chọn nhầm đáp án A là sai.

Câu 24: Trắc nghiệm ID: 145409

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( {1;0;2} \right)\) và đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z + 1}}{2}\). Viết phương trình đường thẳng \(\Delta \) đi qua \(A,\) vuông góc và cắt \(d\).

Xem đáp án
Đáp án đúng: b

Gọi \(B = \Delta  \cap d\), suy ra \(B \in d\) nên $B\left( {1 + t;t; - 1 + 2t} \right)$.

Khi đó \(\Delta \) có VTCP là $\overrightarrow {AB}  = \left( {t;t;2t - 3} \right)$. Đường thẳng \(d\) có VTCP \(\overrightarrow {{u_d}}  = \left( {1;1;2} \right)\).

Theo đề bài: \(\Delta  \bot d \Leftrightarrow \overrightarrow {AB} .\overrightarrow {{u_d}}  = t + t + 4t - 6 = 0 \Leftrightarrow t = 1 \Rightarrow B\left( {2;1;1} \right)\).

Đường thẳng \(\Delta \) cần tìm đi qua hai điểm \(A,{\rm{ }}B\) nên \(\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 2}}{{ - 1}}\).

Hướng dẫn giải:

- Gọi tọa độ giao điểm \(B\) của \(\Delta \) với \({d_2}\).

- \(\Delta  \bot d \Leftrightarrow \overrightarrow {AB} .\overrightarrow u  = 0\).

Câu 25: Trắc nghiệm ID: 145410

Trong không gian với hệ tọa độ $Oxyz$ cho mặt phẳng $(\alpha ):4x + 3y - 7z + 3 = 0$ và điểm $I(0;1;1)$. Phương trình mặt phẳng $(\beta )$ đối xứng với $(\alpha )$ qua $I$ là:

Xem đáp án
Đáp án đúng: d

$(\beta )//(\alpha ) \Rightarrow \overrightarrow {{n_\beta }}  = \overrightarrow {{n_\alpha }}  = (4;3; - 7)$

Lấy $A(0; - 1;0) \in \left( \alpha  \right)$. Gọi $A' \in \left( \beta  \right)$ là điểm đối xứng của $A$ qua $I$.

\( \Rightarrow I\) là trung điểm của \(AA'\).

$\begin{array}{l} \Rightarrow A'(0;3;2)\\ \Rightarrow 4(x - 0) + 3(y - 3) - 7(z - 2) = 0\\ \Rightarrow 4x + 3y - 7z + 5 = 0\end{array}$

Hướng dẫn giải:

$(\beta )$ đối xứng với $(\alpha )$ suy ra $(\beta )//(\alpha ) \Rightarrow \overrightarrow {{n_\beta }}  = \overrightarrow {{n_\alpha }} $

$(\beta )$ đối xứng với $(\alpha )$qua I, suy ra I là trung điểm của AA’  với \(A \in \left( \alpha  \right);A' \in \left( \beta  \right)\)

Câu 26: Trắc nghiệm ID: 145411

Trong không gian với hệ tọa độ \(Oxyz,\) phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( 1;0;-\,2 \right),\) bán kính \(R=4\,\,?\)

Xem đáp án
Đáp án đúng: c

Phương trình mặt cầu cần tìm là \({{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=16.\)

Hướng dẫn giải:

Mặt cầu tâm \(I\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right),\) bán kính \(R\) có phương trình là \({{\left( x-{{x}_{0}} \right)}^{2}}+{{\left( y-{{y}_{0}} \right)}^{2}}+{{\left( z-{{z}_{0}} \right)}^{2}}={{R}^{2}}\)

Câu 27: Trắc nghiệm ID: 145412

Cho số phức $z = 2 + 3i$. Tìm số phức \(w = \left( {3 + 2i} \right)z + 2\overline z \)

Xem đáp án
Đáp án đúng: b

${\rm{w}} = (3 + 2i)z + 2\overline z  = (3 + 2i)(2 + 3i) + 2.(2 - 3i) $

$= 6 - 6 + 4i + 9i + 4 - 6i = 4 + 7i$

Hướng dẫn giải:

+ Sử dụng các quy tắc nhân chia số phức thông thường

+\(z = a + bi \Rightarrow \overline z  = a - bi\)

Giải thích thêm:

Một số em sẽ tính nhầm \({i^2} = 1\) nên ra kết quả \(16 + 7i\) là sai.

Câu 28: Trắc nghiệm ID: 145413

Trong không gian với hệ tọa độ \(Oxyz,\) tam giác \(ABC\) có \(A\left( -\,1;-\,2;4 \right),\,\,B\left( -\,4;-\,2;0 \right)\) và \(C\left( 3;-\,2;1 \right).\) Tính số đo của góc \(B.\)

Xem đáp án
Đáp án đúng: a

Ta có \(AB=5,\,\,AC=5\) và \(BC=5\sqrt{2}\)\(\Rightarrow \,\,A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\)

Suy ra tam giác \(ABC\) vuông cân tại \(A\,\,\Rightarrow \,\,\widehat{ABC}={{45}^{0}}.\)

Hướng dẫn giải:

Tính độ dài các cạnh của tam giác và nhận xét sự đặc biệt của tam giác đó.

Câu 29: Trắc nghiệm ID: 145414

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x - 4y - 2z = 0\). Điểm nào sau đây thuộc mặt cầu \(\left( S \right)\)?

Xem đáp án
Đáp án đúng: a

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3;2;1} \right)\), bán kính \(R = \sqrt {14} \).

Xét điểm \(M\left( {0;1; - 1} \right)\), ta có \(\overrightarrow {IM}  = \left( { - 3; - 1; - 2} \right)\). Suy ra \(IM = \sqrt {9 + 1 + 4}  = \sqrt {14}  = R\).

Do đó điểm \(M\) thuộc mặt cầu \(\left( S \right)\).

Hướng dẫn giải:

Điểm \(A\) thuộc mặt cầu \(\left( S \right)\) nếu \(IA = R\).

Câu 30: Trắc nghiệm ID: 145415

Tính tổng \(T\) của phần thực và phần ảo của số phức \(z = {\left( {\sqrt 2  + 3i} \right)^2}.\)

Xem đáp án
Đáp án đúng: c

Ta có \(z = {\left( {\sqrt 2  + 3i} \right)^2} = {\left( {\sqrt 2 } \right)^2} + 2.\sqrt 2 .3i + {\left( {3i} \right)^2} = 2 + 6\sqrt 2 i - 9 =  - 7 + 6\sqrt 2 i.\)

Suy ra \(T =  - 7 + 6\sqrt 2 .\)

Hướng dẫn giải:

Biến đổi \(z\) về dạng \(z = a + bi\) suy ra phần thực và phần ảo.

Câu 31: Trắc nghiệm ID: 145416

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{x}^{2}}+2x-3\) thỏa mãn \(F\left( 0 \right)=4,\) giá trị của \(F\left( 1 \right)\) bằng

Xem đáp án
Đáp án đúng: a

Ta có \(F\left( x \right)=\int{f\left( x \right)\,dx}=\int{\left( {{x}^{2}}+2x-3 \right)\,dx}=\frac{{{x}^{3}}}{3}+{{x}^{2}}-3x+C.\)

Mà \(F\left( 0 \right)=4\)

\(\Rightarrow \)\({{\left. \left( \frac{{{x}^{3}}}{3}+{{x}^{2}}-3x+C \right) \right|}_{x\,\,=\,\,0}}=4\Rightarrow C=4.\)

Vậy \(F\left( 1 \right)={{\left. \left( \frac{{{x}^{3}}}{3}+{{x}^{2}}-3x+4 \right) \right|}_{x\,\,=\,\,1}}=\frac{7}{3}.\)

Câu 32: Trắc nghiệm ID: 145417

Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {1 - \cos x} \right)}^n}\sin xdx} \) bằng:

Xem đáp án
Đáp án đúng: a

Đặt \(t = 1 - \cos x \Rightarrow dt = \sin xdx\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\)

Khi đó \(I = \int\limits_0^1 {{t^n}dt}  = \left. {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right|_0^1 = \dfrac{1}{{n + 1}}\)

Hướng dẫn giải:

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Giải thích thêm:

Một số em khi thay cận sẽ thay nhầm dẫn đến kết quả \(\dfrac{1}{{n + 1}} - 1 = \dfrac{{ - n}}{{n + 1}}\) và chọn nhầm đáp án D là sai.

Câu 33: Trắc nghiệm ID: 145418

Cho $F\left( x \right) = {x^2}$ là nguyên hàm của hàm số $f\left( x \right){e^{2x}}$ và $f\left( x \right)$ là hàm số thỏa mãn điều kiện $f\left( 0 \right) =  0,\,\,f\left( 1 \right) = \dfrac{2}{e^2}.$ Tính tích phân $I = \int\limits_0^1 {f'\left( x \right){e^{2x}}{\rm{d}}x} .$

Xem đáp án
Đáp án đúng: a

Vì ${x^2}$ là một nguyên hàm của hàm số $f\left( x \right){e^{2x}} \Rightarrow \int {f\left( x \right){e^{2x}}\,{\rm{d}}x}  = {x^2}.$

Đặt $\left\{ \begin{array}{l}u = {e^{2x}}\\{\rm{d}}v = f'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = 2{e^{2x}}{\rm{d}}x\\v = f\left( x \right)\end{array} \right.,$ khi đó $\int\limits_0^1 {f'\left( x \right){e^{2x}}{\rm{d}}x}  = \left. {f\left( x \right){e^{2x}}} \right|_0^1 - 2\int\limits_0^1 {f\left( x \right){e^{2x}}\,{\rm{d}}x} .$

Suy ra $I = {e^2}f\left( 1 \right) - f\left( 0 \right) - 2\left. {{x^2}} \right|_0^1 =  2-0 - 2 =  0$

Vậy $I =  0$

Hướng dẫn giải:

- $F(x)$ được gọi là 1 nguyên hàm của hàm số $f(x)$ khi và chỉ khi \(\int {f\left( x \right)dx}  = F\left( x \right)\) và \(\int\limits_a^b {f\left( x \right)dx}  = \left. {F\left( x \right)} \right|_a^b.\)

- Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

- Trong các tích phân đã xuất hiện dạng vi phân \(f'\left( x \right)dx\) thì ta đặt \(dv = f'\left( x \right)dx\).

- Đồng nhất thức.

Câu 34: Trắc nghiệm ID: 145419

Trong Công viên Toán học có những mảnh đất hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp nhất trong toán học. Ở đó có mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemniscate có phương trình trong hệ tọa độ $Oxy$ là \(16{y^2} = {x^2}\left( {25 - {x^2}} \right)\) như hình vẽ bên. Tính diện tích $S$ của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ trục tọa độ $Oxy$ tương ứng với chiều dài $1$ mét

Đề kiểm tra học kì 2 - Đề số 4 - ảnh 1
Xem đáp án
Đáp án đúng: d

Hoành độ giao điểm của đồ thị với trục hoành là $x = 0;x = 5;x =  - 5$

Ta thấy diện tích mảnh đất Bernoulli bao gồm diện tích $4$ mảnh đất nhỏ bằng nhau.

Xét diện tích $S$ mảnh đất nhỏ trong góc phần tư thứ nhất ta có

$\begin{array}{l}4y = x\sqrt {25 - {x^2}} ;x \in \left[ {0;5} \right] \\ \Rightarrow S = \dfrac{1}{4}\int\limits_0^5 {x\sqrt {25 - {x^2}} } d{\rm{x}} = \dfrac{{125}}{{12}}\\ \Rightarrow S = 4.\dfrac{{125}}{{12}} = \dfrac{{125}}{3}\left( {{m^2}} \right)\end{array}$

Hướng dẫn giải:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số $f\left( x \right)$ liên tục, trục hoành và 2 đường thẳng $x = a$ và  $x = b$ là:

${\rm{S}} = \int\limits_a^b {\left| {f\left( x \right)} \right|} d{\rm{x}}$

Giải thích thêm:

Một số em sẽ giải như sau:

\(S = \int\limits_{ - 5}^0 { - \dfrac{1}{4}x\sqrt {25 - {x^2}} dx}  + \int\limits_0^5 {\dfrac{1}{4}x\sqrt {25 - {x^2}} dx}  = \dfrac{{125}}{6}\) và chọn đáp án A là sai.

Câu 35: Trắc nghiệm ID: 145420

Vòm cửa lớn của một trung tâm văn hóa có hình parabol. Gắn parabol vào hệ trục \(Oxy\) thì nó có đỉnh \(\left( {0;8} \right)\) và cắt trục hoành tại 2 điểm phân biệt, trong đó có 1 điểm là \(\left( { - 4;0} \right)\). Người ta dự định lắp vào cửa kính cho vòm cửa này. Hãy tính diện tích mặt kính cần lắp vào.

Xem đáp án
Đáp án đúng: a

+ Gọi phương trình parabol là: $y=a{x^2} + {\rm{ }}bx + c $

Nhận thấy với $x = 0$ thì $y = 8$ suy ra $c = 8$.

Mặt khác \(\left( {0;8} \right)\) là đỉnh nên \( - \dfrac{b}{{2a}} = 0 \Leftrightarrow b = 0\)

Điểm $(-4;0)$ thuộc đồ thị hàm số nên phương trình $y=0$ có nghiệm \(x =  - 4 \Rightarrow a =  - \dfrac{1}{2}\).

Vậy phương trình parabol: \(y =  - \dfrac{{{x^2}}}{2} + 8\)

Bài toán quy về tính diện tích được tạo bởi parabol với trục \(Ox\).

Ta có:

\(S = \int\limits_{ - 4}^4 {\left| { - \dfrac{{{x^2}}}{2} + 8} \right|dx}  = 2\int\limits_0^4 {\left( { - \dfrac{{{x^2}}}{2} + 8} \right)dx}  = 2.\left. {\left( { - \dfrac{{{x^3}}}{6} + 8x} \right)} \right|_0^4 = \dfrac{{128}}{3}{m^2}\)

Hướng dẫn giải:

- Tìm phương trình parabol.

- Sử dụng công thức tính diện tích hình phẳng giới hạn bởi các đường cong.

Câu 36: Trắc nghiệm ID: 145421

Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị $y =  - \,\sqrt {4 - {x^2}} ,\,\,{x^2} + 3y = 0$ quay quanh trục $Ox$ là $V = \dfrac{{a\pi \sqrt 3 }}{b},$ với $a,\,\,b > 0$ và $\dfrac{a}{b}$ là phân số tối giản. Tính tổng $T = a + b.$

Xem đáp án
Đáp án đúng: a

\({x^2} + 3y = 0 \Leftrightarrow y =  - \dfrac{{{x^2}}}{3}\)

Hoành độ giao điểm là nghiệm của phương trình

$ - \,\sqrt {4 - {x^2}}  =  - \dfrac{{{x^2}}}{3} \Leftrightarrow 3\sqrt {4 - {x^2}}  = {x^2} \Leftrightarrow\left\{ \begin{array}{l}0 \le {x^2} \le 4\\{x^4} + 9{x^2} - 36 = 0\end{array} \right. $

$\Leftrightarrow {x^2} = 3 \Leftrightarrow x =  \pm \,\sqrt 3 .$

Khi đó, thể tích khối tròn xoay cần tính là $V = \pi \int\limits_{ - \,\sqrt 3 }^{\sqrt 3 } {\left| {{{\left( { - \,\sqrt {4 - {x^2}} } \right)}^2} - {{\left( { - \,\dfrac{{{x^2}}}{3}} \right)}^2}} \right|\,{\rm{d}}x.} $

$ = \pi \int\limits_{ - \,\sqrt 3 }^{\sqrt 3 } {\left| {\left( {4 - {x^2}} \right) - \dfrac{{{x^4}}}{9}} \right|{\rm{d}}x}  = \left| {\pi \left. {\left( {4x - \dfrac{{{x^3}}}{3} - \dfrac{{{x^5}}}{{45}}} \right)} \right|_{ - \sqrt 3 }^{\sqrt 3 }} \right| $

$= 2\pi \left( {4\sqrt 3  - \sqrt 3  - \dfrac{{\sqrt 3 }}{5}} \right) = \dfrac{{28\pi \sqrt 3 }}{5}$

Vậy $V = \dfrac{{28\pi \sqrt 3 }}{5} = \dfrac{{a\pi \sqrt 3 }}{b} \Rightarrow \left\{ \begin{array}{l}a = 28\\b = 5\end{array} \right. \Rightarrow T = a + b = 28 + 5 = 33.$ 

Hướng dẫn giải:

Giải phương trình hoành độ giao điểm tìm các đường giới hạn.

Thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi các đường \(y = f\left( x \right),x = a,x = b\) quanh trục $Ox$ là: $V = \pi .\int\limits_a^b {{f^2}\left( x \right){\rm{d}}x} .$

Câu 37: Trắc nghiệm ID: 145422

Cho hình phẳng $\left( H \right)$ giới hạn bởi \(y = \dfrac{1}{3}{x^3} - {x^2}\) và $Ox$.  Thể tích khối tròn xoay sinh ra khi quay $\left( H \right)$  quanh $Ox$ bằng :

Xem đáp án
Đáp án đúng: a

Ta có \(\dfrac{1}{3}{x^3} - {x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\)

$V=\pi {{\int\limits_{0}^{3}{\left( \dfrac{1}{3}{{x}^{3}}-{{x}^{2}} \right)}}^{2}}d\text{x }=\pi \int\limits_{0}^{3}{\left( \dfrac{1}{9}{{x}^{6}}-\dfrac{2}{3}{{x}^{5}}+{{x}^{4}} \right)}dx$

$=\left. \pi \left( \dfrac{1}{63}{{x}^{7}}-\dfrac{1}{9}{{x}^{6}}+\dfrac{1}{5}{{x}^{5}} \right) \right|_{0}^{3}=\dfrac{81}{35}\pi $

Hướng dẫn giải:

- Tìm các hoành độ giao điểm của đồ thị hàm số với trục \(Ox\).

- Tính thể tích theo công thức \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)

Giải thích thêm:

HS thường quên bình phương \(f\left( x \right)\) dẫn đến chọn nhầm đáp án \(\dfrac{9}{4}\) là đáp án B. hoặc một số em khác quên không nhân thêm \(\pi \) dẫn đến chọn nhầm đáp án C là sai.

Câu 38: Trắc nghiệm ID: 145423

Tính môđun của số phức $z$ biết $\overline z  = \left( {4 - 3i} \right)\left( {1 + i} \right)$.

Xem đáp án
Đáp án đúng: c

Ta có: $\overline z  = \left( {4 - 3i} \right)\left( {1 + i} \right) = 7 + i \Rightarrow z = 7 - i \Rightarrow \left| z \right| = \sqrt {50}  = 5\sqrt 2 $

Hướng dẫn giải:

Áp dụng công thức $z = a + bi \Rightarrow \overline z  = a - bi;\left| z \right| = \left| {\overline z } \right| = \sqrt {{a^2} + {b^2}} $

Giải thích thêm:

Có thể áp dụng các chú ý về mô đun số phức như sau: \(\left| {z.z'} \right| = \left| z \right|.\left| {z'} \right|\) và \(\left| z \right| = \left| {\overline z } \right|\):

Ta có: \(\left| z \right| = \left| {\overline z } \right| = \left| {\left( {4 - 3i} \right)\left( {1 + i} \right)} \right| = \left| {4 + 3i} \right|\left| {1 + i} \right| = \sqrt {{4^2} + {3^2}} .\sqrt {{1^2} + {1^2}}  = 5\sqrt 2 \)

Câu 39: Trắc nghiệm ID: 145424

Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:

Xem đáp án
Đáp án đúng: b

\(2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{z^2} = 2\\{z^2} =  - \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z =  \pm \sqrt 2 \\z =  \pm i\dfrac{{\sqrt 2 }}{2}\end{array} \right.\)\(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2} = 2 + 2 + \dfrac{1}{2} + \dfrac{1}{2} = 5\)

Hướng dẫn giải:

Giải phương trình phức từ đó tính tổng.

Câu 40: Trắc nghiệm ID: 145425

Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện $\left| {z - i} \right| = 5$ và \({z^2}\) là số thuần ảo?

Xem đáp án
Đáp án đúng: c

Đặt \(z = a + bi\)

Ta có: $\left| {z - i} \right| = 5 \Leftrightarrow \left| {a + bi - i} \right| = 5 $ $\Leftrightarrow \left| {a + \left( {b - 1} \right)i} \right| = 5 \Leftrightarrow \sqrt {{a^2} + {{\left( {b - 1} \right)}^2}} = 5 $ $\Leftrightarrow {a^2} + {\left( {b - 1} \right)^2} = 25$ (1)

${z^2} = (a+bi)^2={a^2} + 2{\rm{a}}bi - {b^2}=a^2-b^2+2abi$

Do \({z^2}\) là số thuần ảo nên:${a^2} - {b^2} = 0 \Leftrightarrow \left( {a - b} \right)\left( {a + b} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
b = a\\
b = - a
\end{array} \right.$

TH1: b=a thay vào (1) ta được:

${a^2} + {\left( {a - 1} \right)^2} = 25 $ $\Leftrightarrow {a^2} + {a^2} - 2a + 1 = 25$ $ \Leftrightarrow 2{a^2} - 2a - 24 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}
a = 4 \Rightarrow b = 4\\
a = - 3 \Rightarrow b = - 3
\end{array} \right.$

TH2: b=-a thay vào (1) ta được:

${a^2} + {\left( { - a - 1} \right)^2} = 25$ $ \Leftrightarrow {a^2} + {a^2} + 2a + 1 = 25 $ $\Leftrightarrow 2{a^2} + 2a - 24 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}
a = 3 \Rightarrow b = - 3\\
a = - 4 \Rightarrow b = 4
\end{array} \right.$

Vậy có $4$ số phức cần tìm là: $4+4i, -3-3i,$ $3-3i, -4+4i$.

Hướng dẫn giải:

- Số phức \(z\) là số ảo nếu \(a = 0\)

Giải thích thêm:

Một số em nhớ nhầm điều kiện số ảo là \(ab = 0 \Rightarrow \left[ \begin{array}{l}a = 0\\b = 0\end{array} \right.\)  dẫn đến chọn nhầm đáp án A là sai.

Câu 41: Trắc nghiệm ID: 145426

Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.

Xem đáp án
Đáp án đúng: a

Ta có: ${z_2} = 2i$

Có $A\left( {1;1} \right);B\left( {0;2} \right)$ và $C\left( {m; - 1} \right)$

\(\overrightarrow {AB}  = ( - 1;1);\overrightarrow {BC}  = (m; - 3) \Rightarrow \overrightarrow {AB} .\overrightarrow {BC}  =  - 1.m - 3 = 0 \Leftrightarrow m =  - 3\)

Hướng dẫn giải:

Áp dụng công thức tích vô hướng $2$  véc tơ vuông góc với nhau thì bằng $0$

Câu 42: Trắc nghiệm ID: 145427

Trong số các số phức $z$ thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3\), gọi ${z_0}$ là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là

Xem đáp án
Đáp án đúng: d

Gọi $z = x + yi$;

Khi đó $z - 4 + 3i = \left( {x - 4} \right) + \left( {y + 3} \right)i$

$ \Rightarrow \left| {z - 4 + 3i} \right| = \left| {\left( {x - 4} \right) + \left( {y + 3} \right)i} \right| = 3 \Rightarrow {\left( {x - 4} \right)^2} + {\left( {y + 3} \right)^2} = 9$

Vậy quỹ tích các điểm \(M\) biểu diễn số phức \(z\) thuộc đường tròn tâm $I\left( {4; - 3} \right);R = 3$.

Đặt  $\left\{ \begin{array}{l}x = 3\sin t + 4\\y = 3\cos t - 3\end{array} \right.$

$ \Rightarrow {x^2} + {y^2} = {\left( {3\sin t + 4} \right)^2} + {\left( {3\cos t - 3} \right)^2} $

$= 9{\sin ^2}t + 9{\cos ^2}t + 24\sin t - 18\cos t + 25 = 24\sin t - 18\cos t + 34$

Mà $24\sin t - 18\cos t \le \sqrt {\left( {{{24}^2} + {{18}^2}} \right)\left( {{{\sin }^2}t + {{\cos }^2}t} \right)}  = 30$ (theo bunhiacopxki)

$ \Rightarrow {x^2} + {y^2} \le 30 + 34 = 64 \Rightarrow \sqrt {{x^2} + {y^2}}  \le 8 \Rightarrow \left| z \right| \le 8$

Hướng dẫn giải:

- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\)

- Bước 2: Thay \(z\) vào biểu thức đã cho tìm mối quan hệ của \(x,y\) suy ra tập hợp biểu diễn của số phức \(z\).

- Bước 3: Sử dụng bất đẳng thức Bunhiacopxki để đánh giá biểu thức của \(x,y\).

Giải thích thêm:

Cách khác:

\(\begin{array}{l}
\left| {z - 4 + 3i} \right| = \left| {z - \left( {4 - 3i} \right)} \right|\\
\ge \left| z \right| - \left| {4 - 3i} \right| = \left| z \right| - 5\\
\Rightarrow 3 \ge \left| z \right| - 5 \Leftrightarrow \left| z \right| \le 8\\
\Rightarrow \max \left| z \right| = 8
\end{array}\)

Câu 43: Trắc nghiệm ID: 145428

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(M\left( 1;2;3 \right).\) Mặt phẳng \(\left( P \right)\) đi qua M và cắt các tia \(Ox;\,\,Oy;\,\,Oz\) lần lượt tại các điểm \(A;\,\,B;\,\,C\) \(\left( A;\,\,B;\,\,C\ne O \right)\) sao cho thể tích của tứ diện \(OABC\) nhỏ nhất. Phương trình của mặt phẳng \(\left( P \right)\) là

Xem đáp án
Đáp án đúng: b

Gọi \(A\left( a;0;0 \right),\,\,B\left( 0;b;0 \right),\,\,C\left( 0;0;c \right)\)\(\Rightarrow \) Phương trình mặt phẳng \(\left( P \right):\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1.\)

Vì \(OA,\,\,OB,\,\,OC\) đôi một vuông góc \(\Rightarrow \) Thể tích khối chóp \(O.ABC\) là \(V=\dfrac{1}{6}OA.OB.OC=\dfrac{abc}{6}.\)

Điểm \(M\in \left( P \right)\) suy ra \(1=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\ge 3\sqrt[3]{\dfrac{1}{a}.\dfrac{2}{b}.\dfrac{3}{c}}\) \(\Leftrightarrow 1\ge {{3}^{3}}.\dfrac{6}{abc}\) \(\Rightarrow abc\ge 162\Rightarrow V\ge 27.\)

Dấu bằng xảy ra khi và chỉ khi \(\dfrac{1}{a}=\dfrac{2}{b}=\dfrac{3}{c}=\dfrac{1}{3}\Rightarrow \left\{ \begin{align}  & a=3 \\ & b=6 \\ & c=9 \\\end{align} \right..\) Vậy \(\left( P \right):\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1.\)

Hướng dẫn giải:

+) Gọi \(A\left( a;0;0 \right),\,\,B\left( 0;b;0 \right),\,\,C\left( 0;0;c \right)\)\(\Rightarrow \) Phương trình mặt phẳng \(\left( P \right):\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1.\)

+) Vì mặt phẳng chắn trên các trục tọa độ nên sử dụng phương trình đoạn chắn và áp dụng bất đẳng thức AM – GM cho việc xác định thể tích min. Từ đó lập được phương trình mặt phẳng.

Câu 44: Trắc nghiệm ID: 145429

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t{\rm{      }}}\\{y = 8 + 4t}\\{z = 3 + 2t}\end{array}} \right.\) và mặt phẳng $\left( P \right):x + y + z - 7 = 0.$ Phương trình đường thẳng \(\Delta '\) là hình chiếu vuông góc của \(\Delta \) trên \(\left( P \right)\) là:

Xem đáp án
Đáp án đúng: d

Gọi \(\left( Q \right)\) là mặt phẳng chứa \(\Delta \) và vuông góc với \(\left( P \right)\), suy ra $\left( Q \right):2x + y - 3z + 1 = 0.$

Khi đó \(\Delta '\) cần tìm là giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) nên thỏa mãn hệ $\left\{ \begin{array}{l}x + y + z - 7 = 0\\2x + y - 3z + 1 = 0\end{array} \right..$

Đặt \(z = t,\) ta có phương trình tham số của \(\Delta '\) là \(\left\{ {\begin{array}{*{20}{c}}{x =  - 8 + 4t}\\{y = 15 - 5t}\\{z = t{\rm{       }}}\end{array}} \right..\)

Hướng dẫn giải:

- Viết phương trình mặt phẳng \(\left( Q \right)\) chứa \(\Delta \) và vuông góc với \(\left( P \right)\).

- Đường thẳng cần tìm là giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Câu 45: Trắc nghiệm ID: 145430

Trong không gian với hệ tọa độ $Oxyz$, phương trình mặt phẳng \((P)\) đi qua hai điểm \(A(1;1;2),B(0; - 1;1)\)  và song song với đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{z}{2}$ là:

Xem đáp án
Đáp án đúng: a

Ta có:$\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( { - 1; - 2; - 1} \right)\\\overrightarrow {{u_d}}  = \left( {1; - 1;2} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {{u_d}} } \right] = ( - 5;1;3)$

Vì \((P)\) đi qua hai điểm \(A,B\)  và song song với đường thẳng $d$ nên ta có \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ;\overrightarrow {{u_d}} } \right] = \left( { - 5;1;3} \right)\)

Ta có:

$\begin{array}{l}(P):\left\{ \begin{array}{l}\overrightarrow {{n_P}}  = ( - 5;1;3)\\A(1;1;2) \in (P)\end{array} \right. \Rightarrow  - 5(x - 1) + (y - 1) + 3(z - 2) = 0\\ \Leftrightarrow  - 5x + y + 3z - 2 = 0 \Leftrightarrow 5x - y - 3z + 2 = 0\end{array}$

Hướng dẫn giải:

- Vì \((P)\) đi qua hai điểm \(A,B\)  và song song với đường thẳng d nên ta có \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} {\rm{;}}\overrightarrow {{u_d}} } \right]\)

- Phương trình mặt phẳng $(P)$ qua \(M({x_0};{y_0};{z_0})\) và có vecto $\overrightarrow n  = (a;b;c)$ có dạng:

                                      $a.(x - {x_0}) + b.(y - {y_0}) + c(z - {z_0}) = 0$

Câu 46: Trắc nghiệm ID: 145431

Trong không gian với hệ tọa độ ${\rm{Ox}}yz$. Hãy viết phương trình  mặt cầu $(S)$ có tâm \(I(2\,;\,0;1)\) và tiếp xúc với đường thẳng \(d: \dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\).

Xem đáp án
Đáp án đúng: a

\(\overrightarrow {{u_d}}  = (1;2;1)\) . Lấy điểm \( M( 1;0;2) \in d\) ;

\(\begin{array}{l}\overrightarrow {MI}  = ( - 1;0;1) \Rightarrow \left[ {\overrightarrow {MI} ,\overrightarrow u } \right] = ( - 2;2; - 2)\\R = d(I,d) = \dfrac{{\left| {\left[ {\overrightarrow {MI} ,\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \dfrac{{\sqrt {{{(2)}^2} + {2^2} + {{( - 2)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 \end{array}\)

Vậy phương trình mặt cầu tâm $I ( 2; 0; 1)$ bán kính \(\sqrt 2 \) là:

\({\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\) .

Hướng dẫn giải:

+ \(R = d(I,d)\)

+ Phương trình mặt cầu $(S)$ tâm $I( a;b;c)$ bán kính $R$ là $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$

Câu 47: Trắc nghiệm ID: 145432

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha  \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha  \right)\) có phương trình là:

Xem đáp án
Đáp án đúng: c

Mặt phẳng \(\left( \alpha  \right)\) có VTPT \(\overrightarrow n  = \left( {1;1; - 1} \right)\).

Gọi \(B = \Delta  \cap d\), suy ra \(B \in d \Rightarrow B\left( {3 + t;3 + 3t;2t} \right)\).

Suy ra đường thẳng \(\Delta \) có VTCP \(\overrightarrow {AB}  = \left( {2 + t;1 + 3t;1 + 2t} \right)\).

Vì \(\Delta \parallel \left( \alpha  \right)\) nên \(\overrightarrow {AB} .\overrightarrow n  = 0 \Leftrightarrow 2 + t + 1 + 3t - 2t - 1 = 0 \Leftrightarrow t =  - 1\).

Do đó phương trình \(\Delta :\dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{{ - 2}} = \dfrac{{z + 1}}{{ - 1}}\).

Hướng dẫn giải:

- Gọi \(B = \Delta  \cap d\)

- \(\Delta //\left( \alpha  \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_\alpha }}  = 0\)

Câu 48: Trắc nghiệm ID: 145433

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-2y+4z-1=0\) và mặt phẳng \(\left( P \right):x+y-z-m=0.\) Tìm tất cả m để \(\left( P \right)\) cắt \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính lớn nhất.

Xem đáp án
Đáp án đúng: c

Mặt cầu (S) có tâm \(I\left( 1;1;-2 \right)\) và bán kính \(R=\sqrt{7}\).

Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất thì \(d\left( I;\left( P \right) \right)\) nhỏ nhất.

Ta có \(d\left( I;\left( P \right) \right)=\frac{\left| 1+1-\left( -2 \right)-m \right|}{\sqrt{3}}=\frac{\left| 4-m \right|}{\sqrt{3}}\)

\(\Rightarrow d{{\left( I;\left( P \right) \right)}_{\min }}=0\Leftrightarrow m=4\)

Hướng dẫn giải:

Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất thì \(d\left( I;\left( P \right) \right)\) nhỏ nhất.

Câu 49: Trắc nghiệm ID: 145434

Cho số phức $z$ thỏa mãn $\left| {z - 2} \right| = 2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w = \left( {1 - i} \right)z + i$ là một đường tròn. Tính bán kính $r$ của đường tròn đó

Xem đáp án
Đáp án đúng: d

Giả sử $w = a + bi$ . Ta có

\(\begin{array}{l}w = (1 - i)z + i \Leftrightarrow a + bi = (1 - i)z + i\\ \Leftrightarrow a + bi = (1 - i)(z - 2) + i + 2(1 - i)\\ \Leftrightarrow a + bi = (1 - i)(z - 2) + 2 - i\\ \Leftrightarrow (1 - i)(z - 2) = a - 2 + (b + 1)i\\ \Leftrightarrow z - 2 = \dfrac{{a - 2 + (b + 1)i}}{{1 - i}}\\ \Leftrightarrow z - 2 = \dfrac{{\left[ {a - 2 + (b + 1)i} \right](1 + i)}}{2}\\ \Leftrightarrow z - 2 = \dfrac{1}{2}\left[ {a - 2 - b - 1 + (a - 2 + b + 1)i} \right]\\ \Leftrightarrow z - 2 = \dfrac{1}{2}\left[ {a - b - 3 + (a + b - 1)i} \right]\end{array}\)

 Theo giả thiết $\left| {z - 2} \right| = 2$ nên ta có \(\begin{array}{l}\dfrac{1}{4}\left[ {{{(a - b - 3)}^2} + {{(a + b - 1)}^2}} \right] = 4 \Leftrightarrow {(a - b - 3)^2} + {(a + b - 1)^2} = 16 \Leftrightarrow 2{a^2} + 2{b^2} + 10 - 8a + 4b = 16\\ \Leftrightarrow {a^2} + {b^2} - 4a + 2b - 3 = 0 \Leftrightarrow {(a - 2)^2} + {(b + 1)^2} = 8\end{array}\)

Tập hợp các điểm trong mặt phẳng tọa độ $Oxy$ biểu diễn số phức $w$ là một đường tròn có bán kính bằng \(2\sqrt 2 \).

Hướng dẫn giải:

Phương pháp tìm tập hợp điểm biểu diễn số phức

Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)

Bước 2: Thay \(z\) vào đề bài \( \Rightarrow \) Sinh ra một phương trình:

+) Đường thẳng: \(Ax + By + C = 0.\)

+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)

+) Parabol: \(y = a.{x^2} + bx + c\)

+) Elip: \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\)

Câu 50: Trắc nghiệm ID: 145435

Cho hàm số $f(x)$ liên tục, \(f(x)>-1,\,f(0)=0\) và thỏa mãn \(f'(x)\sqrt{{{x}^{2}}+1}=2x\sqrt{f(x)+1}\). Tính \(f\left( \sqrt{3} \right)\).

Xem đáp án
Đáp án đúng: b

\(f'(x)\sqrt{{{x}^{2}}+1}=2x\sqrt{f(x)+1}\Leftrightarrow \frac{f'(x)}{\sqrt{f(x)+1}}=\frac{2x}{\sqrt{{{x}^{2}}+1}}\Rightarrow \int{\frac{f'(x)}{\sqrt{f(x)+1}}}dx=\int{\frac{2x}{\sqrt{{{x}^{2}}+1}}}dx\Leftrightarrow \int{\frac{d\left( f(x)+1 \right)}{\sqrt{f(x)+1}}}=\int{\frac{d({{x}^{2}}+1)}{\sqrt{{{x}^{2}}+1}}}\)

\(\Leftrightarrow 2\sqrt{f(x)+1}=2\sqrt{{{x}^{2}}+1}+C\)

Mà \(f(0)=0\Rightarrow 2\sqrt{0+1}=2\sqrt{{{0}^{2}}+1}+C\Rightarrow C=0\)

\(\Rightarrow \sqrt{f(x)+1}=\sqrt{{{x}^{2}}+1}\Leftrightarrow f(x)={{x}^{2}}\)

\(\Rightarrow f\left( \sqrt{3} \right)={{\left( \sqrt{3} \right)}^{2}}=3\)

Hướng dẫn giải:

Lấy nguyên hàm hai vế, tìm hàm số \(f(x)\).

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »