Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Gọi $z = x + yi$;
Khi đó $z - 4 + 3i = \left( {x - 4} \right) + \left( {y + 3} \right)i$
$ \Rightarrow \left| {z - 4 + 3i} \right| = \left| {\left( {x - 4} \right) + \left( {y + 3} \right)i} \right| = 3 \Rightarrow {\left( {x - 4} \right)^2} + {\left( {y + 3} \right)^2} = 9$
Vậy quỹ tích các điểm \(M\) biểu diễn số phức \(z\) thuộc đường tròn tâm $I\left( {4; - 3} \right);R = 3$.
Đặt $\left\{ \begin{array}{l}x = 3\sin t + 4\\y = 3\cos t - 3\end{array} \right.$
$ \Rightarrow {x^2} + {y^2} = {\left( {3\sin t + 4} \right)^2} + {\left( {3\cos t - 3} \right)^2} $
$= 9{\sin ^2}t + 9{\cos ^2}t + 24\sin t - 18\cos t + 25 = 24\sin t - 18\cos t + 34$
Mà $24\sin t - 18\cos t \le \sqrt {\left( {{{24}^2} + {{18}^2}} \right)\left( {{{\sin }^2}t + {{\cos }^2}t} \right)} = 30$ (theo bunhiacopxki)
$ \Rightarrow {x^2} + {y^2} \le 30 + 34 = 64 \Rightarrow \sqrt {{x^2} + {y^2}} \le 8 \Rightarrow \left| z \right| \le 8$
Hướng dẫn giải:
- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\)
- Bước 2: Thay \(z\) vào biểu thức đã cho tìm mối quan hệ của \(x,y\) suy ra tập hợp biểu diễn của số phức \(z\).
- Bước 3: Sử dụng bất đẳng thức Bunhiacopxki để đánh giá biểu thức của \(x,y\).
Giải thích thêm:
Cách khác:
\(\begin{array}{l}
\left| {z - 4 + 3i} \right| = \left| {z - \left( {4 - 3i} \right)} \right|\\
\ge \left| z \right| - \left| {4 - 3i} \right| = \left| z \right| - 5\\
\Rightarrow 3 \ge \left| z \right| - 5 \Leftrightarrow \left| z \right| \le 8\\
\Rightarrow \max \left| z \right| = 8
\end{array}\)
Gọi $z = x + yi$;
Khi đó $z - 4 + 3i = \left( {x - 4} \right) + \left( {y + 3} \right)i$
$ \Rightarrow \left| {z - 4 + 3i} \right| = \left| {\left( {x - 4} \right) + \left( {y + 3} \right)i} \right| = 3 \Rightarrow {\left( {x - 4} \right)^2} + {\left( {y + 3} \right)^2} = 9$
Vậy quỹ tích các điểm \(M\) biểu diễn số phức \(z\) thuộc đường tròn tâm $I\left( {4; - 3} \right);R = 3$.
Đặt $\left\{ \begin{array}{l}x = 3\sin t + 4\\y = 3\cos t - 3\end{array} \right.$
$ \Rightarrow {x^2} + {y^2} = {\left( {3\sin t + 4} \right)^2} + {\left( {3\cos t - 3} \right)^2} $
$= 9{\sin ^2}t + 9{\cos ^2}t + 24\sin t - 18\cos t + 25 = 24\sin t - 18\cos t + 34$
Mà $24\sin t - 18\cos t \le \sqrt {\left( {{{24}^2} + {{18}^2}} \right)\left( {{{\sin }^2}t + {{\cos }^2}t} \right)} = 30$ (theo bunhiacopxki)
$ \Rightarrow {x^2} + {y^2} \le 30 + 34 = 64 \Rightarrow \sqrt {{x^2} + {y^2}} \le 8 \Rightarrow \left| z \right| \le 8$
Hướng dẫn giải:
- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\)
- Bước 2: Thay \(z\) vào biểu thức đã cho tìm mối quan hệ của \(x,y\) suy ra tập hợp biểu diễn của số phức \(z\).
- Bước 3: Sử dụng bất đẳng thức Bunhiacopxki để đánh giá biểu thức của \(x,y\).
Giải thích thêm:
Cách khác:
\(\begin{array}{l}
\left| {z - 4 + 3i} \right| = \left| {z - \left( {4 - 3i} \right)} \right|\\
\ge \left| z \right| - \left| {4 - 3i} \right| = \left| z \right| - 5\\
\Rightarrow 3 \ge \left| z \right| - 5 \Leftrightarrow \left| z \right| \le 8\\
\Rightarrow \max \left| z \right| = 8
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z\) thỏa mãn \(\left| z \right| = 1\) và điểm \(A\) trong hình vẽ bên là điểm biểu diễn của \(z\). Biết rằng trong hình vẽ bên, điểm biểu diễn của số phức $w = \dfrac{1}{{iz}}$ là một trong bốn điểm \(M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q\). Khi đó điểm biểu diễn của số phức $w$ là
Cho hình phẳng $\left( H \right)$ giới hạn bởi \(y = \dfrac{1}{3}{x^3} - {x^2}\) và $Ox$. Thể tích khối tròn xoay sinh ra khi quay $\left( H \right)$ quanh $Ox$ bằng :
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị $y = - \,\sqrt {4 - {x^2}} ,\,\,{x^2} + 3y = 0$ quay quanh trục $Ox$ là $V = \dfrac{{a\pi \sqrt 3 }}{b},$ với $a,\,\,b > 0$ và $\dfrac{a}{b}$ là phân số tối giản. Tính tổng $T = a + b.$
Cho tam giác \(ABC\) có \(A\left( {0;0;1} \right)\), \(B\left( {0; - 1;0} \right)\) và \(C\left( {2;1; - 2} \right)\). Gọi \(G\) là trọng tâm tam giác. Phương trình đường thẳng \(AG\) là:
Trong các tích phân sau, tích phân nào có giá trị bằng \(2\)?
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 3}}{1} = \dfrac{{y - 3}}{3} = \dfrac{z}{2}\), mặt phẳng \(\left( \alpha \right):x + y - z + 3 = 0\) và điểm \(A\left( {1;2 - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) cắt \(d\) và song song với mặt phẳng \(\left( \alpha \right)\) có phương trình là:
Với cách đổi biến \(u=\sqrt{1+3\ln x}\) thì tích phân \(\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{1+3\ln x}}}dx\) trở thành:
Trong Công viên Toán học có những mảnh đất hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp nhất trong toán học. Ở đó có mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemniscate có phương trình trong hệ tọa độ $Oxy$ là \(16{y^2} = {x^2}\left( {25 - {x^2}} \right)\) như hình vẽ bên. Tính diện tích $S$ của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ trục tọa độ $Oxy$ tương ứng với chiều dài $1$ mét
Cho số phức $z$ thỏa mãn $\left| {z - 2} \right| = 2$. Biết rằng tập hợp các điểm biểu diễn các số phức $w = \left( {1 - i} \right)z + i$ là một đường tròn. Tính bán kính $r$ của đường tròn đó
Viết phương trình mặt phẳng $\left( P \right)$ đi qua điểm $M\left( {1;0; - 2} \right)$ và vuông góc với hai mặt phẳng $\left( Q \right),\left( R \right)$ cho trước với $\left( Q \right):x + 2y - 3z + 1 = 0$ và $\left( {{\rm{ }}R} \right):2x - 3y + z + 1 = 0$ .
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( {1;0;2} \right)\) và đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z + 1}}{2}\). Viết phương trình đường thẳng \(\Delta \) đi qua \(A,\) vuông góc và cắt \(d\).
Cho $F\left( x \right) = {x^2}$ là nguyên hàm của hàm số $f\left( x \right){e^{2x}}$ và $f\left( x \right)$ là hàm số thỏa mãn điều kiện $f\left( 0 \right) = 0,\,\,f\left( 1 \right) = \dfrac{2}{e^2}.$ Tính tích phân $I = \int\limits_0^1 {f'\left( x \right){e^{2x}}{\rm{d}}x} .$
Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm
$A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)$. Gọi $H\left( {a;b;c} \right)$ là trực tâm của tam giác \(ABC\). Giá trị của $a + b + c$ bằng:
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(M\left( 1;2;3 \right).\) Mặt phẳng \(\left( P \right)\) đi qua M và cắt các tia \(Ox;\,\,Oy;\,\,Oz\) lần lượt tại các điểm \(A;\,\,B;\,\,C\) \(\left( A;\,\,B;\,\,C\ne O \right)\) sao cho thể tích của tứ diện \(OABC\) nhỏ nhất. Phương trình của mặt phẳng \(\left( P \right)\) là