Hai quy tắc đếm cơ bản

Lý thuyết về hai quy tắc đếm cơ bản môn toán lớp 11 với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(404) 1345 29/07/2022

1. Quy tắc cộng

k phương án A1,A2,A3,...,Ak để thực hiện công việc. Trong đó:

- Có n1 cách thực hiện phương án A1,

- Có n2 cách thực hiện phương án A2

- Có nk cách thực hiện phương án Ak.

Khi đó, số cách để thực hiện công việc là: n1+n2+...+nk cách.

Nếu AB là hai tập hợp hữu hạn không giao nhau thì số phần tử của AB bằng tổng số phần tử của A và của B, tức là: |AB|=|A|+|B|.

Ví dụ: Đi từ Hà Nội vào TP. Hồ Chí Minh có thể đi bằng ô tô, tàu hỏa, máy bay. Biết có 10 chuyến ô tô, 2 chuyến tàu hỏa và 1 chuyến máy bay có thể vào được TP. Hồ Chí Minh. Số cách có thể đi để vào TP. Hồ Chí Minh từ Hà Nội là:

Hướng dẫn:

3 phương án đi từ Hà Nội vào TP. Hồ Chí Minh là: ô tô, tàu hỏa, máy bay.

- Có 10 cách đi bằng ô tô (vì có 10 chuyến).

- Có 2 cách đi bằng tàu hỏa (vì có 2 chuyến).

- Có 1 cách đi bằng máy bay (vì có 1 chuyến).

Vậy có tất cả 10+2+1=13 cách đi từ HN và TP.HCM.

2. Quy tắc nhân

k công đoạn A1,A2,...,Ak để thực hiện công việc.

- Có n1 cách thực hiện công đoạn A1.

- Có n2 cách thực hiện công đoạn A2.

- Có nk cách thực hiện công đoạn Ak.

Khi đó, số cách để thực hiện công việc là: n1.n2.....nk cách.

Ví dụ: Mai muốn đặt mật khẩu nhà có 4 chữ số. Chữ số đầu tiên là một trong 3 chữ số 1;2;0, chữ số thứ hai là một trong 3 chữ số 6;4;3, chữ số thứ ba là một trong 4 chữ số 9;1;4;6 và chữ số thứ tư là một trong 4 chữ số 8;6;5;4. Có bao nhiêu cách để Mai đặt mật khẩu nhà?

Hướng dẫn:

Việc đặt mật khẩu nhà có 4 công đoạn (từ chữ số đầu tiên đến chữ số cuối cùng).

- Có 3 cách thực hiện công đoạn 1 (ứng với 3 cách chọn chữ số đầu tiên).

- Có 3 cách thực hiện công đoạn 2 (ứng với 3 cách chọn chữ số thứ hai).

- Có 4 cách thực hiện công đoạn 3 (ứng với 4 cách chọn chữ số thứ ba).

- Có 4 cách thực hiện công đoạn 4 (ứng với 4 cách chọn chữ số thứ tư).

Vậy có tất cả 3.3.4.4=144 cách để Mai đặt mật khẩu nhà.

(404) 1345 29/07/2022