Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Điều kiện: \(x > - 3.\)
Do ${2^{{{\log }_5}\left( {x + 3} \right)}} > 0$ nên để phương trình có nghiệm thì \(x > 0.\)
Lấy logarit cơ số \(2\) của hai vế phương trình, ta được ${\log _5}\left( {x + 3} \right) = {\log _2}x$.
Đặt $t = {\log _5}\left( {x + 3} \right) = {\log _2}x$$ \Rightarrow \left\{ \begin{array}{l}x + 3 = {5^t}\\x = {2^t}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {5^t} - 3\\x = {2^t}\end{array} \right.$ $ \Leftrightarrow {5^t} - 3 = {2^t} \Leftrightarrow {5^t} = {3.1^t} + {2^t}$
Chia hai vế phương trình cho ${5^t}$, ta được $1 = 3.{\left( {\dfrac{1}{5}} \right)^t} + {\left( {\dfrac{2}{5}} \right)^t}$.
Đây là phương trình hoành độ giao điểm của đường \(y = 1\) (hàm hằng) và đồ thị hàm số $y = 3.{\left( {\dfrac{1}{5}} \right)^t} + {\left( {\dfrac{2}{5}} \right)^t}$ (hàm số này nghịch biến vì nó là tổng của hai hàm số nghịch biến).
Do đó phương trình có nghiệm duy nhất. Nhận thấy \(t = 1\) thỏa mãn phương trình.
Với \(t = 1 \Rightarrow x = {2^t} = 2\left( {TM} \right).\)
Vậy phương trình có nghiệm duy nhất.
Hướng dẫn giải:
- Logarit cơ số \(2\) hai vế đưa về phương trình logarit.
- Đặt ẩn phụ đưa phương trình về phương trình mũ với ẩn mới.
- Giải phương trình mới bằng phương pháp xét hàm đặc trưng.
Điều kiện: \(x > - 3.\)
Do ${2^{{{\log }_5}\left( {x + 3} \right)}} > 0$ nên để phương trình có nghiệm thì \(x > 0.\)
Lấy logarit cơ số \(2\) của hai vế phương trình, ta được ${\log _5}\left( {x + 3} \right) = {\log _2}x$.
Đặt $t = {\log _5}\left( {x + 3} \right) = {\log _2}x$$ \Rightarrow \left\{ \begin{array}{l}x + 3 = {5^t}\\x = {2^t}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {5^t} - 3\\x = {2^t}\end{array} \right.$ $ \Leftrightarrow {5^t} - 3 = {2^t} \Leftrightarrow {5^t} = {3.1^t} + {2^t}$
Chia hai vế phương trình cho ${5^t}$, ta được $1 = 3.{\left( {\dfrac{1}{5}} \right)^t} + {\left( {\dfrac{2}{5}} \right)^t}$.
Đây là phương trình hoành độ giao điểm của đường \(y = 1\) (hàm hằng) và đồ thị hàm số $y = 3.{\left( {\dfrac{1}{5}} \right)^t} + {\left( {\dfrac{2}{5}} \right)^t}$ (hàm số này nghịch biến vì nó là tổng của hai hàm số nghịch biến).
Do đó phương trình có nghiệm duy nhất. Nhận thấy \(t = 1\) thỏa mãn phương trình.
Với \(t = 1 \Rightarrow x = {2^t} = 2\left( {TM} \right).\)
Vậy phương trình có nghiệm duy nhất.
Hướng dẫn giải:
- Logarit cơ số \(2\) hai vế đưa về phương trình logarit.
- Đặt ẩn phụ đưa phương trình về phương trình mũ với ẩn mới.
- Giải phương trình mới bằng phương pháp xét hàm đặc trưng.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = {\left( {{x^2} - 4} \right)^{1 + \sqrt 5 }}\) có tập xác định là.
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {\log _{2020}}\left( {mx - m + 2} \right)\) xác định trên \(\left[ {1; + \infty } \right).\)
Tìm tập nghiệm \(S\) của phương trình ${\log _6}\left[ {x\left( {5 - x} \right)} \right] = 1.$
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:
Giải phương trình \({\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \dfrac{5}{4}\)
Tổng các nghiệm của phương trình \({3^{{x^4} - 3{x^2}}} = 81\)