Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
A.
\(\dfrac{1}{2}\)
B.
\(\sqrt 3 \)
C.
\(2\)
D.
\(\sqrt[3]{2}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Dựa vào đồ thị hàm số ta thấy \({x_1}\) là nghiệm của phương trình hoành độ giao điểm \({\log _b}{x_1} = 3 \Leftrightarrow {x_1} = {b^3}.\)
Và \({x_2}\) là nghiệm của phương trình hoành độ giao điểm \({\log _a}{x_2} = 3 \Leftrightarrow {x_2} = {a^3}.\)
Theo đề bài ta có: \({x_2} = 2{x_1} \Rightarrow {a^3} = 2{b^3} \Leftrightarrow \dfrac{{{a^3}}}{{{b^3}}} = 2 \Leftrightarrow \dfrac{a}{b} = \sqrt[3]{2}.\)
Hướng dẫn giải:
Dựa vào đồ thị hàm số, xác định các giá trị của \({x_1},\,{x_2}\) theo \(a\) và \(b.\) Từ đó tính giá trị của \(\dfrac{a}{b}.\)
Dựa vào đồ thị hàm số ta thấy \({x_1}\) là nghiệm của phương trình hoành độ giao điểm \({\log _b}{x_1} = 3 \Leftrightarrow {x_1} = {b^3}.\)
Và \({x_2}\) là nghiệm của phương trình hoành độ giao điểm \({\log _a}{x_2} = 3 \Leftrightarrow {x_2} = {a^3}.\)
Theo đề bài ta có: \({x_2} = 2{x_1} \Rightarrow {a^3} = 2{b^3} \Leftrightarrow \dfrac{{{a^3}}}{{{b^3}}} = 2 \Leftrightarrow \dfrac{a}{b} = \sqrt[3]{2}.\)
Hướng dẫn giải:
Dựa vào đồ thị hàm số, xác định các giá trị của \({x_1},\,{x_2}\) theo \(a\) và \(b.\) Từ đó tính giá trị của \(\dfrac{a}{b}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Hàm số \(y = {\left( {{x^2} - 4} \right)^{1 + \sqrt 5 }}\) có tập xác định là.
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Tìm tập nghiệm \(S\) của phương trình ${\log _6}\left[ {x\left( {5 - x} \right)} \right] = 1.$
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {\log _{2020}}\left( {mx - m + 2} \right)\) xác định trên \(\left[ {1; + \infty } \right).\)
Phương trình \({2^{{{\log }_5}\left( {x + 3} \right)}} = x\) có tất cả bao nhiêu nghiệm?
Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:
Tổng các nghiệm của phương trình \({3^{{x^4} - 3{x^2}}} = 81\)
Giải phương trình \({\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \dfrac{5}{4}\)