Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Từ hình vẽ ta thấy \(1 < {2^\alpha } < 2 \Rightarrow 0 < \alpha < 1\)
.
Hướng dẫn giải:
Sử dụng các dáng đồ thị hàm số \(y = {x^\alpha }\) ứng với các điều kiện khác nhau của \(\alpha \):
Giải thích thêm:
Nhiều HS sẽ sử dụng tính đồng biến nghịch biến để xét, vì thấy hàm số đồng biến nên vội vàng kết luận \(\alpha > 1\) vì nhầm với tính đơn điệu của hàm số mũ là sai.
Có thể nhận xét trực tiếp:
Đồ thị là đường cong nên loại A và B.
Mặt khác thấy $x=4$ thì $y = 2$ nên chọn D
Từ hình vẽ ta thấy \(1 < {2^\alpha } < 2 \Rightarrow 0 < \alpha < 1\)
.
Hướng dẫn giải:
Sử dụng các dáng đồ thị hàm số \(y = {x^\alpha }\) ứng với các điều kiện khác nhau của \(\alpha \):

Giải thích thêm:
Nhiều HS sẽ sử dụng tính đồng biến nghịch biến để xét, vì thấy hàm số đồng biến nên vội vàng kết luận \(\alpha > 1\) vì nhầm với tính đơn điệu của hàm số mũ là sai.
Có thể nhận xét trực tiếp:
Đồ thị là đường cong nên loại A và B.
Mặt khác thấy $x=4$ thì $y = 2$ nên chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = {\left( {{x^2} - 4} \right)^{1 + \sqrt 5 }}\) có tập xác định là.
Tìm tập nghiệm \(S\) của phương trình ${\log _6}\left[ {x\left( {5 - x} \right)} \right] = 1.$
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {\log _{2020}}\left( {mx - m + 2} \right)\) xác định trên \(\left[ {1; + \infty } \right).\)
Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng xác định?
Phương trình \({2^{{{\log }_5}\left( {x + 3} \right)}} = x\) có tất cả bao nhiêu nghiệm?
Giải phương trình \({\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \dfrac{5}{4}\)
Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Tổng các nghiệm của phương trình \({3^{{x^4} - 3{x^2}}} = 81\)
