Đề kiểm tra 1 tiết chương 7: Phương pháp tọa độ trong không gian - Đề số 2
-
Hocon247
-
25 câu hỏi
-
45 phút
-
657 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\) là cặp VTCP của mặt phẳng \(\left( P \right)\). Véc tơ nào sau đây là một véc tơ pháp tuyến của \(\left( P \right)\)?
Ta có: \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\)
\(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 3\end{array}&\begin{array}{l}3\\ - 5\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 5\end{array}&\begin{array}{l}5\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}5\\ - 1\end{array}&\begin{array}{l}1\\ - 3\end{array}\end{array}} \right|} \right) = \left( {4;22; - 14} \right)\)
Do đó \(\overrightarrow n = \left( {4;22; - 14} \right)\) là một VTPT của \(\left( P \right)\) nên \(\dfrac{1}{2}\overrightarrow n = \left( {2;11; - 7} \right)\) cũng là một VTPT của \(\left( P \right)\).
Hướng dẫn giải:
Nếu \(\overrightarrow a ,\overrightarrow b \) là cặp VTCP của \(\left( P \right)\) thì \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) là một VTPT của \(\left( P \right)\).
Giải thích thêm:
- Một số em có thể sẽ chọn nhầm đáp án C vì tính sai tích có hướng của hai véc tơ.
- Có thể làm bài toán bằng cách thử đáp án với chú ý: VTPT vuông góc với cả hai VTCP.
Cụ thể: \(\left( {1;2;0} \right).\left( {5;1;3} \right) \ne 0\) nên loại.
\(\left( {2;11; - 7} \right).\left( {5;1;3} \right) = 0;\left( {2;11; - 7} \right).\left( { - 1; - 3; - 5} \right) = 0\) nên B đúng.
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \(\overrightarrow a = \left( {1;1 - 2} \right)\); \(\overrightarrow b = \left( {2;1; - 1} \right)\). Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \dfrac{{1.2 + 1.1 + \left( { - 2} \right)\left( { - 1} \right)}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \dfrac{5}{6}\)
Hướng dẫn giải:
Cho \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right),\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right)\), khi đó \(\cos \left( {a,b} \right) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \dfrac{{{a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}}}{{\sqrt {a_1^2 + a_2^2 + a_3^2} \sqrt {b_1^2 + b_2^2 + b_3^2} }}\)
Cho hai véc tơ \(\overrightarrow u = \left( {m;2;1} \right)\) và \(\overrightarrow v = \left( {0;n;p} \right)\). Biết \(\overrightarrow u = \overrightarrow v \), giá trị \(T = m - n + p\) bằng:
Do \(\overrightarrow u = \overrightarrow v \) nên \(m = 0,n = 2,p = 1\).
Vậy \(m - n + p = 0 - 2 + 1 = - 1\).
Hướng dẫn giải:
Hai véc tơ bằng nhau nếu tọa độ tương ứng của chúng bằng nhau
Trong không gian với hệ tọa độ $Oxyz$ , cho điểm $M$ thỏa mãn hệ thức \(\overrightarrow {OM} = 2\vec i + \vec j\). Tọa độ của điểm $M$ là
Ta có: \(\overrightarrow {OM} = 2\vec i + \vec j \Rightarrow \overrightarrow {OM} = 2.\vec i + 1.\vec j + 0.\overrightarrow k \Leftrightarrow M\left( {2;1;0} \right)\)
Hướng dẫn giải:
Sử dụng định nghĩa điểm \(M\left( {x;y;z} \right) \Leftrightarrow \overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \)
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án C là sai.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;0} \right)\) và \(B\left( {0;1;2} \right)\). Tìm tọa độ vectơ \(\overrightarrow {AB} \)
\(A\left( {1;1;0} \right),B\left( {0;1;2} \right) \Rightarrow \overrightarrow {AB} = \left( {0 - 1;1 - 1;2 - 0} \right) = \left( { - 1;0;2} \right)\)
Hướng dẫn giải:
Cho điểm \(A\left( {{x_A},{y_A},{z_A}} \right);B\left( {{x_B},{y_B},{z_B}} \right)\) thì \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\)
Trong không gian với hệ tọa độ $Oxyz$, tìm tọa độ tâm $I$ và bán kính $R$ của mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {(z - 4)^2} = 20\).
Phương trình có dạng \({(x - a)^2} + {(y - b)^2} + {(z - c)^2} = {R^2}\) với \(a = 1,b = - 2,c = 4\) và \(R = 2\sqrt 5 \)
có tâm \(I\left( {1; - 2;4} \right)\).
Hướng dẫn giải:
Mặt cầu có phương trình \({(x - a)^2} + {(y - b)^2} + {(z - c)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R \)
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án B vì xác định nhầm tâm mặt cầu.
Trong không gian Oxyz, cho hai điểm \(A\left( { - 3;2;1} \right)\) và \(B\left( {5; - 4;1} \right)\). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB.
Gọi I là trung trực của AB ta có \( \Rightarrow I\left( {1; - 1;1} \right)\).
Ta có \(\overrightarrow {AB} = \left( {8; - 6;0} \right) = - 2\left( {4; - 3;0} \right) \Rightarrow \left( P \right)\) đi qua I và nhận \(\overrightarrow n = \left( {4; - 3;0} \right)\). Vậy phương trình mặt phẳng (P) là \(4\left( {x - 1} \right) - 3\left( {y + 1} \right) = 0 \Leftrightarrow 4x - 3y - 7 = 0\)
Hướng dẫn giải:
Mặt phẳng trung trực của AB đi qua trung điểm của AB và nhận \(\overrightarrow {AB} \) làm 1 VTPT.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:$\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 2 + t\end{array} \right.$. Đường thẳng $d$ đi qua các điểm nào sau đây?
Đường thẳng $d$ có phương trình chính tắc \(\dfrac{x}{1} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z - 2}}{1}\).
Thay các điểm ở mối đáp án vào phương trình trên ta thấy chỉ có đáp án D là cả hai điểm đều thỏa mãn phương trình.
Hướng dẫn giải:
Đưa phương trình về phương trình chính tắc rồi kiểm tra các điểm thuộc đường thẳng.
Trong không gian tọa độ Oxyz, mặt cầu \(\left( S \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-20=0\) và mặt phẳng \(\left( \alpha \right):\,\,x+2y-2z+7=0\) cắt nhau theo một đường tròn có chu vi bằng:
Mặt cầu (S) có tâm \(I\left( 1;2;0 \right)\), bán kính R = 5.
\(d\left( I;\left( \alpha \right) \right)=\frac{\left| 1+2.2+7 \right|}{\sqrt{1+4+4}}=4=d\).
Do đó mặt phẳng \(\left( \alpha \right):\,\,x+2y-2z+7=0\) cắt nhau theo một đường tròn (C) có bán kính \(r=\sqrt{{{R}^{2}}-{{d}^{2}}}=3\).
Vậy chu vi đường tròn (C) bằng \(2\pi r=6\pi \).
Hướng dẫn giải:
Gọi I; R lần lượt là tâm và bán kính của mặt cầu (S), giả sử mặt phẳng \(\left( \alpha \right)\) cách I một khoảng là d và cắt mặt cầu theo giao tuyến là đường tròn có bán kính r, khi đó ta có \({{R}^{2}}={{r}^{2}}+{{d}^{2}}\).
Xét đường thẳng $d$ có phương trình \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\end{array} \right.\) và mặt cầu $(S)$ có phương trình \({(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\). Nhận xét nào sau đây đúng.
Giải hệ:
\(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{t^2} + {(2t)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\5{t^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \pm \sqrt {\dfrac{4}{5}} \\x = 1 + t\\y = 2\\z = 3 + 2t\end{array} \right.\)
Suy ra $d $ cắt $(S)$ tại hai điểm phân biệt.
Mặt khác $(S)$ có tâm \(I(1;2;3) \in d\) nên $d$ qua tâm của mặt cầu.
Do đó $AB$ đạt GTLN.
Hướng dẫn giải:
Xét số giao điểm của $d$ và $(S)$ bằng cách tìm số nghiệm của hệ phương trình
\(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\end{array} \right.\)
Giải thích thêm:
Các em cũng có thể sử dụng công thức tính khoảng cách từ một điểm đến đường thẳng để tính $d(I;d)$ rồi so sánh với $R$ rồi kết luận vị trí tương đối.
Hoặc quan sát nhanh ta thấy: tâm $I \in d $ nên chắc chắn $d$ cắt $(S)$ tại hai điểm phân biệt $A,B$ và $AB$ chính là đường kính.
Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua \(M(1;-1;2)\) và chứa trục Ox. Điểm nào trong các điểm sau đây thuộc mặt phẳng \(\left( \alpha \right)\)?
\(\left( \alpha \right)\) là mặt phẳng đi qua \(M(1;-1;2)\) và chứa trục Ox\(\Rightarrow \left( \alpha \right)\)nhận \(\overrightarrow{i}(1;0;0),\,\,\overrightarrow{OM}=(1;-1;2)\) là cặp vecto chỉ phương \(\Rightarrow \overrightarrow{n}=\left[ \overrightarrow{i};\overrightarrow{OM} \right]=(0;-2;-1)\) là một vecto pháp tuyến của \(\left( \alpha \right)\).
\(\left( \alpha \right)\): \(0.(x-0)-2.(y-0)-1\left( z-0 \right)=0\Leftrightarrow 2y+z=0\)
Dễ dàng kiểm tra \(N(2;2;-4)\in \left( \alpha \right)\)
Hướng dẫn giải:
Mặt phẳng \(\left( \alpha \right)\)nhận \(\overrightarrow{i}(1;0;0),\,\,\overrightarrow{OM}=(1;-1;2)\) là cặp vecto chỉ phương \(\Rightarrow \overrightarrow{n}=\left[ \overrightarrow{i};\overrightarrow{OM} \right]\) là một vecto pháp tuyến của \(\left( \alpha \right)\)
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x + 4y - 4z - m = 0}}$ có bán kính $R = 5$. Tìm giá trị của $m$?
Ta có: $I(1; - 2;2),R = \sqrt {{1^2} + {{( - 2)}^2} + {2^2} + m} = \sqrt {9 + m} $
Ta có: $R = 5 \Leftrightarrow \sqrt {9 + m} = 5 \Leftrightarrow m = 16$
Hướng dẫn giải:
Ta có: phương trình mặt cầu có 2 dạng:
Dạng 1: ${\left( {x{\rm{ }}-{\rm{ }}a} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}b} \right)^2} + {\rm{ }}{\left( {z{\rm{ }}-{\rm{ }}c} \right)^2} = {\rm{ }}{R^2}\left( {R{\rm{ }} > {\rm{ }}0} \right)$ có tâm $I\left( {a;b;c} \right)$ và bán kính là $R$ .
Dạng 2: ${x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2}-{\rm{ }}2ax{\rm{ }}-{\rm{ }}2by{\rm{ }}-{\rm{ }}2cz{\rm{ }} + {\rm{ }}d{\rm{ }} = {\rm{ }}0{\rm{ }}\left( {{a^2} + {\rm{ }}{b^2} + {c^2} > {\rm{ }}d} \right)$ có tâm là $I\left( {a;b;c} \right)$ và bán kính $R = \sqrt {{a^2} + {b^2} + {c^2} - d} $
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\,\frac{x+1}{3}=\frac{y-1}{-2}=\frac{z-2}{1}\). Đường thẳng d có một VTCP là:
Đường thẳng d có 1 VTCP là \(\overrightarrow{u}=\left( 3;-2;1 \right)\)
Hướng dẫn giải:
Đường thẳng \(d:\,\,\frac{x-{{x}_{0}}}{a}=\frac{y-{{y}_{0}}}{b}=\frac{z-{{z}_{0}}}{c}\) có 1 VTCP là \(\overrightarrow{u}=\left( a;b;c \right)\)
Trong không gian $Oxyz$ cho hai điểm $A\left( { - 3,1,2} \right),{\rm{ }}B\left( {1, - 1,0} \right)$. Phương trình mặt cầu nhận $AB$ làm đường kính có tọa độ tâm là:
Mặt cầu nhận $AB$ làm đường kính có tọa độ tâm $I$ là trung điểm của $AB$. Suy ra ta có:
\(\left\{ \begin{array}{l}{x_I} = \dfrac{{{x_A} + {x_B}}}{2}\\{y_I} = \dfrac{{{y_A} + {y_B}}}{2}\\{z_I} = \dfrac{{{z_A} + {z_B}}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} = - 1\\{y_I} = 0\\{z_I} = 1\end{array} \right.\)
Hướng dẫn giải:
- Tâm mặt cầu chính là trung điểm của \(AB\).
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án A vì quên không chia cho \(2\) khi tính tọa độ \(I\).
Trong không gian với hệ tọa độ \(Oxyz,\) đường thẳng \(d:\frac{x-1}{1}=\frac{y+1}{2}=\frac{z}{-\,2}\) đi qua điểm
Ta có \(d:\left\{ \begin{align} x=1+t \\ y=-\,1+2t \\ z=-\,2t \\ \end{align} \right.,\) với \(t=0\) \(\Rightarrow \) Đường thẳng \(d\) đi qua điểm \(M\left( 1;-\,1;0 \right).\)
Hướng dẫn giải:
Thay tọa độ các điểm ở đáp án vào phương trình đường thẳng
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ thuộc trong mặt phẳng $\left( {Oyz} \right)$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.
$M$ thuộc trong mặt phẳng $\left( {Oyz} \right)$, giả sử \(M(0;m;n)\).
Ta có:
\(\begin{array}{l}MA = \sqrt {{{(0 - 0)}^2} + {{(m - 2)}^2} + {{(n + 1)}^2}} = \sqrt {{{(m - 2)}^2} + {{(n + 1)}^2}} \\MB = \sqrt {{{(0 - 2)}^2} + {{(m - 0)}^2} + {{(n - 1)}^2}} = \sqrt {{m^2} + {{(n - 1)}^2} + 4} \end{array}\)
Suy ra
\(\begin{array}{l}M{A^2} + M{B^2} = {(m - 2)^2} + {(n + 1)^2} + {m^2} + {(n - 1)^2} + 4\\ = 2{m^2} - 4m + 2{n^2} + 10 = 2({m^2} - 2m + 1) + 2{n^2} + 8\\ = 2{(m - 1)^2} + 2{n^2} + 8 \ge 8\end{array}\)
\( \Rightarrow \min \left( {M{A^2} + M{B^2}} \right) = 8 \Leftrightarrow \left\{ \begin{array}{l}m - 1 = 0\\n = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = 0\end{array} \right.\).
Vậy \(M(0;1;0)\)
Hướng dẫn giải:
Sử dụng công thức tính độ dài đoạn thẳng:
Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\)ta có: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{({b_1} - {a_1})}^2} + {{({b_2} - {a_2})}^2} + {{({b_3} - {a_3})}^2}} \)
Giải thích thêm:
- Nhầm lẫn giữa tọa độ các điểm thuộc $\left( {Oxy} \right),\left( {Oyz} \right),\left( {Ozx} \right)$
- Tính sai tọa độ các véc tơ.
- Nhớ sai công thức tính khoảng cách.
Cho tam giác $ABC$ biết $A\left( {2;4; - 3} \right)$ và trọng tâm $G$ của tam giác có toạ độ là $G\left( {2;1;0} \right)$. Khi đó \(\overrightarrow {AB} + \overrightarrow {AC} \) có tọa độ là
Gọi $M$ là trung điểm của $BC$. Ta có \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \).
Do tính chất trọng tâm có \(\overrightarrow {AM} = \dfrac{3}{2}\overrightarrow {AG} \). Suy ra\(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).
Mà \(\overrightarrow {AG} = \left( {2 - 2;1 - 4;0 - ( - 3)} \right) = \left( {0; - 3;3} \right)\). Suy ra \(3\overrightarrow {AG} = (0; - 9;9)\).
Hướng dẫn giải:
- Gọi \(M\) là trung điểm của \(BC\), tìm \(\overrightarrow {AM} \) qua \(\overrightarrow {AG} \).
- Biểu diễn tổng hai véc tơ \(\overrightarrow {AB} + \overrightarrow {AC} \) qua \(\overrightarrow {AM} \) suy ra kết luận.
Giải thích thêm:
HS có thể sử dụng công thức trọng tâm tam giác để tính.
Cách 2: Sử dụng tính chất: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {GB} + \overrightarrow {GC} = - \overrightarrow {GA} = \overrightarrow {AG} \) như sau:
\(\overrightarrow {AB} + \overrightarrow {AC} \) \( = \overrightarrow {AG} + \overrightarrow {GB} + \overrightarrow {AG} + \overrightarrow {GC} \) \( = 2\overrightarrow {AG} + \left( {\overrightarrow {GB} + \overrightarrow {GC} } \right)\) \( = 2\overrightarrow {AG} + \left( { - \overrightarrow {GA} } \right)\) \( = 2\overrightarrow {AG} + \overrightarrow {AG} = 3\overrightarrow {AG} \)
Cách 3: Gọi \(B\left( {{x_B};{y_B};{z_B}} \right),C\left( {{x_C};{y_C};{z_C}} \right)\) thì \(\left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} = 3{x_G}\\{y_A} + {y_B} + {y_C} = 3{y_G}\\{z_A} + {z_B} + {z_C} = 3{z_G}\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 3{x_G} - {x_A}\\{y_B} + {y_C} = 3{y_G} - {y_A}\\{z_B} + {z_C} = 3{z_G} - {z_A}\end{array} \right.\)
Từ đó \(\overrightarrow {AB} + \overrightarrow {AC} \) \( = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right) + \left( {{x_C} - {x_A};{y_C} - {y_A};{z_C} - {z_A}} \right)\) \( = \left( {{x_B} + {x_C} - 2{x_A};{y_B} + {y_C} - 2{y_A};{z_B} + {z_C} - 2{z_A}} \right)\).
Trong không gian với hệ tọa độ , cho \(A\left( {2;5; - 3} \right);\,\,B\left( { - 2;1;1} \right);\,\,C\left( {2;0;1} \right)\) và mặt phẳng (P). Gọi \(D\left( {a;b;c} \right)\,\,\left( {c > 0} \right)\) thuộc \((\alpha ) : 3x+4y+5z+1=0\) sao cho có vô số mặt phẳng (P) chứa C, D và khoảng cách từ A đến (P) gấp 3 lần khoảng cách từ B đến (P). Tính giá trị biểu thức \(S = {a^2} + {b^2} + {c^2}\)
Vì \({d_{(A,(P))}} = 3{d_{(B,(P))}}\) nên AB cắt (P) tại điểm I \( \Rightarrow \left[ \begin{array}{l}\overrightarrow {AI} = 3\overrightarrow {BI} \\\overrightarrow {AI} = - 3\overrightarrow {BI} \end{array} \right. \Rightarrow \left[ \begin{array}{l}I\left( { - 4; - 1;3} \right)\\I\left( { - 1;2;0} \right)\end{array} \right.\)
Vì có vô số mặt phẳng (P) chứa C, D và khoảng cách từ A đến (P) gắp 3 lần khoảng cách từ B đến (P) nên I, C, D thẳng hàng hay \(D = IC \cap (\alpha )\)
+ Nếu \(I\left( { - 4; - 1;3} \right) \Rightarrow {IC} :\left\{ \begin{array}{l}x = 2 + 6t\\y = t\\z = 1 - 2t\end{array} \right. \)
Thay các tọa độ trên vào phương trình \((\alpha) \) ta được:
$3\left( {2 + 6t} \right) + 4t + 5\left( {1 - 2t} \right) + 1 = 0 $ $\Leftrightarrow 12t + 12 = 0 \Leftrightarrow t = - 1$
\(\Rightarrow D\left( { - 4; - 1;3} \right)\) ( thỏa mãn )
+ Nếu \(I( - 1;2;0) \Rightarrow {IC} :\left\{ \begin{array}{l}x = 2 + 3t\\y = - 2t\\z = 1 + t\end{array} \right. \)
Thay các tọa độ trên vào phương trình \((\alpha) \) ta được:
$3\left( {2 + 3t} \right) + 4.(-2t) + 5\left( {1 +t} \right) + 1 = 0 $ $\Leftrightarrow 6t + 12 = 0 \Leftrightarrow t = - 2$
\(\Rightarrow D\left( { - 4;4; - 1} \right)\) ( loại)
Vậy \(D\left( { - 4; - 1;3} \right) \Rightarrow \left\{ \begin{array}{l}a = - 4\\b = - 1\\c = 3\end{array} \right. \Rightarrow S = 16 + 1 + 9 = 26\)
Hướng dẫn giải:
Vì \({d_{(A,(P))}} = 3{d_{(B,(P))}}\) nên AB cắt (P) tại điểm I \( \Rightarrow \left[ \begin{array}{l}\overrightarrow {AI} = 3\overrightarrow {BI} \\\overrightarrow {AI} = - 3\overrightarrow {BI} \end{array} \right.\)
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\left\{ \begin{array}{l}x = t\\y = - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và \(\,{d_2}:\dfrac{x}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 5}}\).
Trong các phương trình sau đây, phương trình nào là phương trình của đường thẳng \({d_3}\) qua \(M\left( {1; - 1;2} \right)\) và vuông góc với cả \({d_1},\,\,{d_2}.\)
Đường \({d_1}\) có VTCP \(\overrightarrow a = \left( {1; - 4;6} \right)\); \({d_2}\) có VTCP \(\overrightarrow b = \left( {2;1; - 5} \right)\).
Vì \({d_3}\) vuông góc với \({d_1};\,\,{d_2}\) nên có véc-tơ chỉ phương \(\overrightarrow u = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {14;17;9} \right)\).
Hướng dẫn giải:
Đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với hai đường thẳng \({d_1},{d_2}\) thì \(d\) có VTCP \(\overrightarrow u = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\)
Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm $M\left( {2;3;3} \right),{\rm{ }}N\left( {2; - 1; - 1} \right),{\rm{ }}P\left( { - 2; - 1;3} \right)$ và có tâm thuộc mặt phẳng \((\alpha ):2x + 3y - z + 2 = 0\).
- Liệt kê các phương trình mặt cầu cho trong 4 đáp án
+ A cho mặt cầu tâm \({I_A}(1, - 1,1)\) và \({R_A} = \sqrt {13} \)
+ B cho mặt cầu tâm \({I_B}(2, - 1,3)\) và \({R_B} = 4\)
+ C cho mặt cầu tâm \({I_C}( - 2,1, - 3)\) và \({R_C} = 2\sqrt 3 \)
+ D cho mặt cầu tâm \({I_D}(1, - 1,1)\) và \({R_D} = \sqrt 5 \)
- Kiểm tra các tâm có thuộc mặt phẳng \((\alpha )\) hay không. Loại được đáp án C.
- Ta thấy\({I_A} \equiv {I_D} = I(1, - 1,1)\), nên ta tính bán kính $R = IM$ rồi so sánh với \({R_A},{R_D}\) .
Có \(IM = \sqrt {{1^2} + {4^2} + {2^2}} = \sqrt {21} \) . Ta thấy \(IM \ne {R_A} \ne {R_D}\). Loại A và D
Hướng dẫn giải:
Xét từng đáp án:
- Xác định tâm mặt cầu và thay vào mặt phẳng.
- Tính bán kính mặt cầu và kiểm tra khoảng cách từ tâm đến các điểm \(A,B,C\) bằng bán kính.
Giải thích thêm:
Tự luận:
\(\overrightarrow {MN} = \left( {0; - 4; - 4} \right)\), \(\overrightarrow {NP} = \left( { - 4;0;4} \right)\)
Gọi (P) và (Q) lần lượt là mặt phẳng trung trực của MN và NP.
Khi đó tâm I của mặt cầu thuộc (P) và (Q)
Ta có:
(P) qua trung điểm A(2;1;1) của MN và nhận vecto \(\overrightarrow {{n_1}} = \left( {0;1;1} \right)\) làm vecto pháp tuyến nên có phương trình:
\(y - 1 + z - 1 = 0 \Leftrightarrow y + z - 2 = 0\)
(Q) qua trung điểm B(0;-1;1) của NP và nhận vecto \(\overrightarrow {{n_2}} = \left( {1;0; - 1} \right)\) làm vecto pháp tuyến nên có phương trình:
\(x - 0 - \left( {z - 1} \right) = 0 \Leftrightarrow x - z + 1 = 0\)
Do I là tâm mặt cầu đi qua 3 điểm M,N,P nên I phải thuộc mặt phẳng trung trực của MN và NP.
Khi đó tọa độ của I là nghiệm của hệ
\(\left\{ \begin{array}{l}2x + 3y - z + 2 = 0\\y + z - 2 = 0\\x - z + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = - 1\\z = 3\end{array} \right.\)
=> I(2;-1;3)
=> R=4
Mặt cầu cần tìm là:
\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 3} \right)^2} = 16\)
\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 2 = 0\)
Trong không gian Oxyz, mặt cầu tâm \(I\left( 1;\ 2;\ -1 \right)\) và cắt mặt phẳng \(\left( P \right):\ 2x-y+2z-1=0\) theo một đường tròn bán kính bằng \(\sqrt{8}\) có phương trình là:
Theo đề bài ta có: \(r=\sqrt{8}.\)
\(OI=d\left( I;\ \left( P \right) \right)=\frac{\left| 2.1-2+2.\left( -1 \right)-1 \right|}{\sqrt{{{2}^{2}}+{{1}^{2}}+{{2}^{2}}}}=\frac{\left| -3 \right|}{\sqrt{9}}=1.\)
Khi đó ta có: \(R=\sqrt{O{{I}^{2}}+{{r}^{2}}}=\sqrt{1+8}=3.\)
Ta có phương trình mặt cầu cần tìm là: \({{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=9.\)
Hướng dẫn giải:
+) Giả sử mặt phẳng (P) cắt mặt cầu tâm I có bán kính R theo giao tuyến là một đường tròn tâm O có bán kính r. Khi đó ta có: \(OI=d\left( I;\ \left( P \right) \right)\) và \(R=\sqrt{O{{I}^{2}}+{{r}^{2}}}.\)
+) Phương trình mặt cầu tâm \(I\left( a;\ b;\ c \right)\) và có bán kính \(R\) có phương trình: \({{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}+{{\left( z-c \right)}^{2}}={{R}^{2}}.\)
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có phương trình: \({x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\) và đường thẳng \(\Delta :\,\,\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = z\) . Mặt phẳng $(P)$ vuông góc với \(\Delta \) và tiếp xúc với $(S)$ có phương trình là
Tâm mặt cầu $I(1;-2;1)$, bán kính $R=3$.
Mặt phẳng $(P)$ vuông góc với $\Delta $ có phương trình dạng $2{\rm{x - }}2y + z + D = 0$
Vì $(P)$ tiếp xúc với mặt cầu nên ${\rm{d}}\left( {I,\left( P \right)} \right) = R \Rightarrow \left| {D - 7} \right| = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{D = -2}\\{D = 16}\end{array}} \right.$
Phương trình $(P)$ là $2x-2y+z-2=0; 2x-2y+z+16=0$.
Hướng dẫn giải:
Mặt phẳng tiếp xúc với mặt cầu thì khoảng cách từ tâm mặt cầu đến mặt phẳng bằng bán kính mặt cầu
Trong không gian với hệ tọa độ Oxyz, viết phươn trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
Gọi \(A\left( {a;0;0} \right);\,\,B\left( {0;b;0} \right);\,\,C\left( {0;0;c} \right)\), khi đó phương trình mặt phẳng \(\left( P \right)\) là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
\(M\left( {1;2;3} \right) \in \left( P \right) \Rightarrow \frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\begin{array}{l}1 = {\left( {\frac{1}{a} + \frac{2}{b} + \frac{3}{c}} \right)^2} \le \left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)\left( {{1^2} + {2^2} + {3^2}} \right)\\ \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge \frac{1}{{14}}\\ \Leftrightarrow \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} \ge \frac{1}{{14}} \Rightarrow {T_{\min }} = \frac{1}{{14}}\end{array}\)
Dấu = xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{a} = \frac{1}{{2b}} = \frac{1}{{3c}}\\\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{a}{2}\\c = \frac{a}{3}\\\frac{1}{a} + \frac{4}{a} + \frac{9}{a} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 14\\b = 7\\c = \frac{{14}}{3}\end{array} \right. \Rightarrow \left( P \right):\,\,\frac{x}{{14}} + \frac{y}{7} + \frac{{3z}}{{14}} = 1 \Leftrightarrow x + 2y + 3z - 14 = 0\)
Hướng dẫn giải:
+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn.
+) Sử dụng BĐT Bunhiacopxki.
+) Tìm điều kiện để dấu đẳng thức xảy ra.
Cho $A\left( {1;2;5} \right),B\left( {1;0;2} \right),C\left( {4;7; - 1} \right),D\left( {4;1;a} \right)$. Để $4$ điểm $A,B,C,D$ đồng phẳng thì $a$ bằng:
Có
$\begin{array}{l}\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {1 - 1;0 - 2;2 - 5} \right) = \left( {0; - 2; - 3} \right)\\\overrightarrow {AC} = \left( {4 - 1;7 - 2; - 1 - 5} \right) = \left( {3;5; - 6} \right)\\\overrightarrow {AD} = \left( {4 - 1;1 - 2;a - 5} \right) = \left( {3; - 1;a - 5} \right)\end{array} \right.\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 3}\\5&{ - 6}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&0\\{ - 6}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 2}\\3&5\end{array}} \right|} \right) = \left( {27; - 9;6} \right)\\ \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = \left( {27; - 9;6} \right).\left( {3; - 1;a - 5} \right) = 60 + 6a\end{array}$
$A,B,C,D$ đồng phẳng khi \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = 0 \Leftrightarrow 60 + 6a = 0 \Leftrightarrow a = - 10\).
Hướng dẫn giải:
Bốn điểm \(A,B,C,D\) được gọi là đổng phẳng nếu và chỉ nếu \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = 0\)
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-2y+4z-1=0\) và mặt phẳng \(\left( P \right):x+y-z-m=0.\) Tìm tất cả m để \(\left( P \right)\) cắt \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính lớn nhất.
Mặt cầu (S) có tâm \(I\left( 1;1;-2 \right)\) và bán kính \(R=\sqrt{7}\).
Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất thì \(d\left( I;\left( P \right) \right)\) nhỏ nhất.
Ta có \(d\left( I;\left( P \right) \right)=\frac{\left| 1+1-\left( -2 \right)-m \right|}{\sqrt{3}}=\frac{\left| 4-m \right|}{\sqrt{3}}\)
\(\Rightarrow d{{\left( I;\left( P \right) \right)}_{\min }}=0\Leftrightarrow m=4\)
Hướng dẫn giải:
Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất thì \(d\left( I;\left( P \right) \right)\) nhỏ nhất.
Đề thi liên quan
-
Đề kiểm tra 15 phút chương 7: Phương pháp tọa độ trong không gian - Đề số 1
-
12 câu hỏi
-
45 phút
-
-
Đề kiểm tra 15 phút chương 7: Phương pháp tọa độ trong không gian - Đề số 2
-
12 câu hỏi
-
45 phút
-
-
Đề kiểm tra 15 phút chương 7: Phương pháp tọa độ trong không gian - Đề số 3
-
12 câu hỏi
-
45 phút
-
-
Đề kiểm tra 1 tiết chương 7: Phương pháp tọa độ trong không gian - Đề số 1
-
25 câu hỏi
-
45 phút
-
-
Đề kiểm tra 1 tiết chương 7: Phương pháp tọa độ trong không gian - Đề số 3
-
25 câu hỏi
-
45 phút
-