Xét đường thẳng $d$ có phương trình \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\end{array} \right.\) và mặt cầu $(S)$ có phương trình \({(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\). Nhận xét nào sau đây đúng.
A.
$d$ cắt $(S)$ tại hai điểm phân biệt $A, B$ và \(AB < 2R\)
B.
$d$ không có điểm chung với $(S)$
C.
$d$ tiếp xúc với $(S)$
D.
$d$ cắt $(S)$ tại hai điểm phân biệt $A, B $ và $AB$ đạt GTLN.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Giải hệ:
\(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{t^2} + {(2t)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\5{t^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \pm \sqrt {\dfrac{4}{5}} \\x = 1 + t\\y = 2\\z = 3 + 2t\end{array} \right.\)
Suy ra $d $ cắt $(S)$ tại hai điểm phân biệt.
Mặt khác $(S)$ có tâm \(I(1;2;3) \in d\) nên $d$ qua tâm của mặt cầu.
Do đó $AB$ đạt GTLN.
Hướng dẫn giải:
Xét số giao điểm của $d$ và $(S)$ bằng cách tìm số nghiệm của hệ phương trình
\(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\end{array} \right.\)
Giải thích thêm:
Các em cũng có thể sử dụng công thức tính khoảng cách từ một điểm đến đường thẳng để tính $d(I;d)$ rồi so sánh với $R$ rồi kết luận vị trí tương đối.
Hoặc quan sát nhanh ta thấy: tâm $I \in d $ nên chắc chắn $d$ cắt $(S)$ tại hai điểm phân biệt $A,B$ và $AB$ chính là đường kính.
Giải hệ:
\(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{t^2} + {(2t)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\5{t^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \pm \sqrt {\dfrac{4}{5}} \\x = 1 + t\\y = 2\\z = 3 + 2t\end{array} \right.\)
Suy ra $d $ cắt $(S)$ tại hai điểm phân biệt.
Mặt khác $(S)$ có tâm \(I(1;2;3) \in d\) nên $d$ qua tâm của mặt cầu.
Do đó $AB$ đạt GTLN.
Hướng dẫn giải:
Xét số giao điểm của $d$ và $(S)$ bằng cách tìm số nghiệm của hệ phương trình
\(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\end{array} \right.\)
Giải thích thêm:
Các em cũng có thể sử dụng công thức tính khoảng cách từ một điểm đến đường thẳng để tính $d(I;d)$ rồi so sánh với $R$ rồi kết luận vị trí tương đối.
Hoặc quan sát nhanh ta thấy: tâm $I \in d $ nên chắc chắn $d$ cắt $(S)$ tại hai điểm phân biệt $A,B$ và $AB$ chính là đường kính.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;0} \right)\) và \(B\left( {0;1;2} \right)\). Tìm tọa độ vectơ \(\overrightarrow {AB} \)
Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua \(M(1;-1;2)\) và chứa trục Ox. Điểm nào trong các điểm sau đây thuộc mặt phẳng \(\left( \alpha \right)\)?
Trong không gian Oxyz, cho hai điểm \(A\left( { - 3;2;1} \right)\) và \(B\left( {5; - 4;1} \right)\). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB.
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\left\{ \begin{array}{l}x = t\\y = - 1 - 4t\\z = 6 + 6t\end{array} \right.\) và \(\,{d_2}:\dfrac{x}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 5}}\).
Trong các phương trình sau đây, phương trình nào là phương trình của đường thẳng \({d_3}\) qua \(M\left( {1; - 1;2} \right)\) và vuông góc với cả \({d_1},\,\,{d_2}.\)
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x + 4y - 4z - m = 0}}$ có bán kính $R = 5$. Tìm giá trị của $m$?
Trong không gian với hệ tọa độ $Oxyz$ , cho điểm $M$ thỏa mãn hệ thức \(\overrightarrow {OM} = 2\vec i + \vec j\). Tọa độ của điểm $M$ là
Cho tam giác $ABC$ biết $A\left( {2;4; - 3} \right)$ và trọng tâm $G$ của tam giác có toạ độ là $G\left( {2;1;0} \right)$. Khi đó \(\overrightarrow {AB} + \overrightarrow {AC} \) có tọa độ là
Trong không gian tọa độ Oxyz, mặt cầu \(\left( S \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-20=0\) và mặt phẳng \(\left( \alpha \right):\,\,x+2y-2z+7=0\) cắt nhau theo một đường tròn có chu vi bằng:
Trong không gian với hệ tọa độ $Oxyz$, tìm tọa độ tâm $I$ và bán kính $R$ của mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {(z - 4)^2} = 20\).
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ thuộc trong mặt phẳng $\left( {Oyz} \right)$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\,\frac{x+1}{3}=\frac{y-1}{-2}=\frac{z-2}{1}\). Đường thẳng d có một VTCP là:
Trong không gian $Oxyz$ cho hai điểm $A\left( { - 3,1,2} \right),{\rm{ }}B\left( {1, - 1,0} \right)$. Phương trình mặt cầu nhận $AB$ làm đường kính có tọa độ tâm là:
Cho hai véc tơ \(\overrightarrow u = \left( {m;2;1} \right)\) và \(\overrightarrow v = \left( {0;n;p} \right)\). Biết \(\overrightarrow u = \overrightarrow v \), giá trị \(T = m - n + p\) bằng:
Trong không gian với hệ tọa độ Oxyz, viết phươn trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
Cho $A\left( {1;2;5} \right),B\left( {1;0;2} \right),C\left( {4;7; - 1} \right),D\left( {4;1;a} \right)$. Để $4$ điểm $A,B,C,D$ đồng phẳng thì $a$ bằng: