Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 31 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263922

Cho hình tứ diện ABCD có AB , BC, CD đôi một vuông góc . Điểm cách đều bốn điểm A, B, C, D là:

Xem đáp án

Ta có

\(\begin{array}{l}CD \bot BC,\,\,AB \bot CD\,\, \Rightarrow CD \bot \left( {ABC} \right)\\AB \bot BC,\,\,AB \bot CD\,\, \Rightarrow AB \bot \left( {CBD} \right)\end{array}\) .

Đáp án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB  không cách đều ba điểm A, B, C.

Đáp án B sai do tam giác BCD không vuông góc tại D  nên trung điểm của BC không cách dều ba điểm B, C, D.

Đáp án D sai vì tam giác BCD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D.

Đáp án C đúng do tam giác ABD vuông tại B nên M cách đều A, B, D và do tam giác ACD vuông tại C ( do \(CD \bot \left( {ABC} \right)\) ) nên M cách đều A, C, D. Từ đó cách đều bốn điểm A, B, C, D.

Câu 2: Trắc nghiệm ID: 263923

Mệnh đề nào sau đây sai?

Xem đáp án

Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau ⇒ Sai

Câu 3: Trắc nghiệm ID: 263924

Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Khi đó góc giữa AB và CD bằng:

Xem đáp án

Ta có \(\left\{ \begin{array}{l}AB \bot AC\\AB \bot AD\end{array} \right.\,\, \to AB \bot \left( {CAD} \right)\,\, \Rightarrow AB \bot CD\) .

Do đó, góc giữa AB và CD là 900.

Câu 4: Trắc nghiệm ID: 263925

Cho hình chóp S. ABCD có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (ABC) bằng:

Xem đáp án

Ta có (SAB) và (ABC) có AB chung và \(\left\{ \begin{array}{l}SA \subset (SAB)\\SA \bot (ABC)\end{array} \right.\,\, \Rightarrow \,\,\left( {SAB} \right) \bot \left( {ABC} \right)\).

Vậy góc giữa hai mặt phẳng trên là 900

Câu 5: Trắc nghiệm ID: 263926

Cho hình chóp tam giác đều S. ABC và đường cao SH, M là trung điểm của BC. \(SA \bot BC\) vì:

Xem đáp án

Ta có: 

\(SH \bot \left( {ABC} \right) \Rightarrow SH \bot BC\). Mà \(\Delta ABC\) đều nên \(AM \bot BC\).

Suy ra \(BC \bot \left( {SAM} \right) \Rightarrow BC \bot SA\)

Câu 6: Trắc nghiệm ID: 263927

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh a, góc nhọn bằng 600 và cạnh \(SC\) vuông góc với mặt phẳng \((ABCD)\) và \(SC =\dfrac{{a\sqrt 6 }}{3}\). Góc giữa hai mặt phẳng \((SBD)\) và \((SAC)\) bằng:

Xem đáp án

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}CA \bot BD\\SC \bot BD\end{array} \right.\,\, \Rightarrow \,\,BD \bot \left( {SAC} \right)\\BD \subset \left( {SBD} \right) \Rightarrow \,\,\left( {SAC} \right) \bot \left( {SBD} \right)\end{array}\)

Vậy góc giữa hai mặt phẳng trên là 900.

Câu 7: Trắc nghiệm ID: 263928

Giá trị của \(\lim \dfrac{{2 - n}}{{\sqrt {n + 1} }}\)

Xem đáp án

\(\lim \dfrac{{2 - n}}{{\sqrt {n + 1} }} = \lim \dfrac{{\dfrac{2}{n} - 1}}{{\sqrt {\dfrac{1}{n} + \dfrac{1}{{{n^2}}}} }} = - \infty\)

Câu 8: Trắc nghiệm ID: 263929

Nếu \(\left| q \right| < 1\) thì:

Xem đáp án

Nếu \(\left| q \right| < 1\) thì: \(\lim {q^n} = 0\)

Câu 9: Trắc nghiệm ID: 263930

Giá trị của \(\lim \dfrac{{{{(n - 2)}^7}{{(2n + 1)}^3}}}{{{{({n^2} + 2)}^5}}}\)

Xem đáp án

\(\eqalign{ & \lim {{{{(n - 2)}^7}{{(2n + 1)}^3}} \over {{{({n^2} + 2)}^5}}} \cr & = \lim {{{{\left( {1 - {2 \over n}} \right)}^7} \cdot {{\left( {2 + {1 \over n}} \right)}^3}} \over {{{\left( {1 + {2 \over {{n^2}}}} \right)}^5}}} = {{{{1.2}^3}} \over 1} = 8 \cr} \)

Câu 10: Trắc nghiệm ID: 263931

Tính \(\lim \dfrac{{{3^n} - {{4.2}^{n - 1}} - 3}}{{{{3.2}^n} + {4^n}}}\)

Xem đáp án

\(\eqalign{ & \lim {{{3^n} - {{4.2}^{n - 1}} - 3} \over {{{3.2}^n} + {4^n}}} \cr & = \lim {{{{\left( {{3 \over 4}} \right)}^n} - {{\left( {{1 \over 2}} \right)}^{n - 1}} - {3 \over {{4^n}}}} \over {3.{{\left( {{1 \over 2}} \right)}^n} + 1}} = {0 \over 1} = 0 \cr}\)

Câu 11: Trắc nghiệm ID: 263932

Tính \(\mathop {\lim }\limits_{x \to  - 1} ({x^2} - x + 7)\) bằng

Xem đáp án

\(\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right) = {( - 1)^2} - ( - 1) + 7 = 9\)

Câu 12: Trắc nghiệm ID: 263933

Cho \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L,\mathop {\lim }\limits_{x \to x{}_0} g(x) = M\). Chọn mệnh đề sai:

Xem đáp án

\(\mathop {\lim }\limits_{x \to {x_o}} f(x) = L,\mathop {\lim }\limits_{x \to {x_o}} g\left( x \right) = M\)

\( \Rightarrow \mathop {lim}\limits_{x \to {x_0}} {{f(x)} \over {g(x)}} = {L \over M}\) nếu \(M \ne 0\Rightarrow\) A sai

Câu 13: Trắc nghiệm ID: 263934

Giá trị của \(\lim (\sqrt {{n^2} + n + 1}  - n)\) bằng

Xem đáp án

\(\eqalign{
& \lim (\sqrt {{n^2} + n + 1} - n) \cr
& = \lim {{{n^2} + n + 1 - {n^2}} \over {\sqrt {{n^2} + n + 1} + n}} \cr
& = \lim {{n + 1} \over {\sqrt {{n^2} + n + 1} + n}} \cr
& = \lim {{1 + {1 \over n}} \over {\sqrt {1 + {1 \over n} + {1 \over {{n^2}}}} + 1}} \cr
& = {1 \over {\sqrt 1 + 1}} = {1 \over 2} \cr} \)

Câu 14: Trắc nghiệm ID: 263935

Tìm \(\lim {u_n}\)biết \({u_n} = \dfrac{{n.\sqrt {1 + 3 + 5 + ... + (2n - 1)} }}{{2{n^2} + 1}}\)

Xem đáp án

\(\eqalign{
& \lim {u_n} = \lim {{n.\sqrt {1 + 3 + 5 + ... + (2n - 1)} } \over {2{n^2} + 1}} \cr
& = \lim {{n\sqrt {{n \over 2}\left( {1 + 2n - 1} \right)} } \over {2{n^2} + 1}} \cr
& = \lim {{{n^2}} \over {2{n^2} + 1}} = \lim {1 \over {2 + {1 \over {{n^2}}}}} = {1 \over 2} \cr} \)

Câu 15: Trắc nghiệm ID: 263936

Tính \(\mathop {\lim }\limits_{x \to 2} ({x^3} + 1)\)

Xem đáp án

\(\mathop {\lim }\limits_{x \to 2} ({x^3} + 1) = {2^3} + 1 = 9\)

Câu 16: Trắc nghiệm ID: 263937

Tính \(\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}}\)

Xem đáp án

\(\eqalign{
& \mathop {\lim }\limits_{x \to {{( - 1)}^ - }} {{{x^2} + 3x + 2} \over {\left| {x + 1} \right|}} \cr
& = \mathop {\lim }\limits_{x \to {{( - 1)}^ - }} {{{x^2} + 3x + 2} \over { - \left( {x + 1} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {{( - 1)}^ - }} {{(x + 1)(x + 2)} \over { - \left( {x + 1} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \left( { - \left( {x + 2} \right)} \right) = - 1 \cr} \)

Câu 17: Trắc nghiệm ID: 263938

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{x - 8}}{{\sqrt[3]{x} - 2}}\,\,\,\,\,khi\,\,\,x > 8\\ax + 4\,\,\,\,\,\,\,\,\,khi\,\,x \le 8\end{array} \right.\) . Để hàm số liên tục tại x = 8, giá trị của a là:

Xem đáp án

\(\eqalign{
& \mathop {\lim }\limits_{x \to {8^ + }} f(x) = \mathop {\lim }\limits_{x \to {8^ + }} {{x - 8} \over {\root 3 \of x - 2}} \cr
& = \mathop {\lim }\limits_{x \to {8^ + }} {{\left( {\root 3 \of x - 2} \right)\left( {\root 3 \of {{x^2}} + 2\root 3 \of x + 4} \right)} \over {\root 3 \of x - 2}} \cr
& = \mathop {\lim }\limits_{x \to {8^ + }} \left( {\root 3 \of {{x^2}} + 2\root 3 \of x + 4} \right) = 12 \cr} \)

Câu 18: Trắc nghiệm ID: 263939

Chọn giá trị của \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt[3]{{2x + 8}} - 2}}{{\sqrt {3x + 4}  - 2}}\)liên tục tại điểm x = 0

Xem đáp án

\(\eqalign{
& \mathop {\lim }\limits_{x \to 0} f(x) = \mathop {\lim }\limits_{x \to 0} {{\root 3 \of {2x + 8} - 2} \over {\sqrt {3x + 4} - 2}} \cr
& = \mathop {\lim }\limits_{x \to 0} {{\left( {\root 3 \of {2x + 8} - 2} \right)\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)\left( {\sqrt {3x + 4} - 2} \right)} \over {\left( {3x + 4 - 4} \right)\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} {{2x\left( {\sqrt {3x + 4} - 2} \right)} \over {3x\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} {{2\left( {\sqrt {3x + 4} - 2} \right)} \over {3\left( {\root 3 \of {{{(2x + 8)}^2}} + 2\root 3 \of {2x + 8} + 4} \right)}} \cr
& = {{2(2 + 2)} \over {3(4 + 4 + 4)}} = {8 \over {36}} = {2 \over 9} \cr} \)

Để hàm số liên tục tại x = 0 thì \(f(0) = \dfrac{2 }{ 9}\)

Câu 19: Trắc nghiệm ID: 263940

Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1}  - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1

Xem đáp án

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} {{\sqrt {3x + 1} - 2} \over {{x^2} - 1}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {{3x + 1 - 4} \over {\left( {{x^2} - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {{3x - 3} \over {\left( {{x^2} - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {{3(x - 1)} \over {(x - 1)(x + 1)\left( {\sqrt {3x + 1} + 2} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {3 \over {\left( {x - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}} = {3 \over {2.4}} = {3 \over 8} \cr} \)

\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }}\dfrac {{a({x^2} - 2)} }{ {x - 3}} =\dfrac {a }{ 2}\)

Để f(x) liên tục tại x=1 thì \(\dfrac{a}{2} = \dfrac{3}{ 8} \Leftrightarrow a = \dfrac{3}{ 4}\)

Câu 20: Trắc nghiệm ID: 263941

Chọn mệnh đề đúng:

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty  \Leftrightarrow \mathop {\lim }\limits_{x \to  + \infty } \left[ { - f\left( x \right)} \right] =  - \infty \)

Câu 21: Trắc nghiệm ID: 263942

Tính \(\mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}\) bằng?

Xem đáp án

\(\eqalign{
& \mathop {\lim }\limits_{x \to - 1} {{{x^2} + 6x + 5} \over {{x^3} + 2{x^2} - 1}} \cr
& = \mathop {\lim }\limits_{x \to - 1} {{\left( {x + 1} \right)\left( {x + 5} \right)} \over {\left( {x + 1} \right)\left( {{x^2} + x - 1} \right)}} \cr
& = \mathop {\lim }\limits_{x \to - 1} {{x + 5} \over {{x^2} + x - 1}} = {4 \over { - 1}} = - 4 \cr} \)

Câu 22: Trắc nghiệm ID: 263943

Cho hàm số \(f(x) = \dfrac{{\sqrt x  - 1}}{{x - 1}}\). Tìm khẳng định đúng trong các khẳng định sau:

(1) \(f(x)\) gián đoạn tại x = 1

(2) \(f(x)\) liên tục tại x = 1

(3) \(\mathop {\lim }\limits_{x \to 1} f(x) = \dfrac{1}{2}\)

Xem đáp án

f(x) có TXĐ: \(R\backslash \left\{ 1 \right\}\) nên f(x) gián đoạn tại x=1

\(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} {{\sqrt x  - 1} \over {x - 1}} = \mathop {\lim }\limits_{x \to 1} {1 \over {\sqrt x  + 1}} = {1 \over 2}\)

Câu 23: Trắc nghiệm ID: 263944

Cho \({u_n} = \dfrac{{{n^2} - 3n}}{{1 - 4{n^3}}}\).  Khi đó \(\lim {u_n}\)bằng?

Xem đáp án

\(\lim {u_n} = \lim {{{n^2} - 3n} \over {1 - 4{n^3}}} = \lim {{{1 \over n} - {3 \over {{n^2}}}} \over {{1 \over {{n^3}}} - 4}} = 0\)

Câu 24: Trắc nghiệm ID: 263945

Dãy số nào dưới đây có giới hạn bằng \( + \infty \)?

Xem đáp án

Đáp án A: \(\lim {u_n} = \lim {{{n^2} - 2n} \over {5n + 5{n^2}}} = \lim {{1 - {2 \over n}} \over {{5 \over n} + 5}} = {1 \over 5}\)

Đáp án B: \(\lim {u_n} = \lim {{1 + {n^2}} \over {5n + 5}} = \lim {{{1 \over n} + n} \over {5 + {5 \over n}}} = \lim {n \over 5} =  + \infty \)

Đáp án C: \(\lim {u_n} = \lim {{1 + 2n} \over {5n + 5{n^2}}} = \lim {{{1 \over {{n^2}}} + {2 \over n}} \over {{5 \over n} + 5}} = 0\)

Đáp án D: \(\lim {u_n} = \lim {{1 - {n^2}} \over {5n + 5}} = \lim {{{1 \over n} - n} \over {5 + {5 \over n}}} =  - \infty \)

Câu 25: Trắc nghiệm ID: 263946

Giới hạn \(\lim \dfrac{{\sqrt {{n^2} - 3n - 5}  - \sqrt {9{n^2} + 3} }}{{2n - 1}}\) bằng?

Xem đáp án

\(\eqalign{
& \lim {{\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} } \over {2n - 1}} \cr
& = \lim {{\sqrt {1 - {3 \over n} - {5 \over {{n^2}}}} - \sqrt {9 + {3 \over {{n^2}}}} } \over {2 - {1 \over n}}} \cr
& = {{\sqrt 1 - \sqrt 9 } \over 2} = - 1 \cr} \)

Câu 26: Trắc nghiệm ID: 263947

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{{a^2}{x^2}\,,\,\,x \le \sqrt 2 ,a \in \mathbb{R}}\\{(2 - a){x^2}\,\,\,,x > \sqrt 2 }\end{array}} \right.\). Tìm a để \(f(x)\)liên tục trên \(\mathbb{R}\)

Xem đáp án

\(\eqalign{
& \mathop {\lim }\limits_{x \to {{\left( {\sqrt 2 } \right)}^ + }} f(x) = \mathop {\lim }\limits_{x \to {{\left( {\sqrt 2 } \right)}^ + }} \left( {2 - a} \right){x^2} = 4 - 2a \cr
& \mathop {\lim }\limits_{x \to {{\left( {\sqrt 2 } \right)}^ - }} f(x) = \mathop {\lim }\limits_{x \to {{\left( {\sqrt 2 } \right)}^ + }} {a^2}{x^2} = 2{a^2} \cr} \)

f(x) liên tục trên R

\(\eqalign{
& \Leftrightarrow 2{a^2} = 4 - 2a \cr
& \Leftrightarrow 2{a^2} + 2a - 4 = 0 \cr} \)

\(\Leftrightarrow a = 1\) hoặc \(a =  - 2\)

Câu 27: Trắc nghiệm ID: 263948

Giá trị của \(\lim \dfrac{1}{{n + 1}}\) bằng:

Xem đáp án

\(\lim \dfrac{1}{{n + 1}} = \lim \dfrac{{\dfrac{1}{n}}}{{1 + \dfrac{1}{n}}} = \dfrac{0}{1} = 0\)

Câu 28: Trắc nghiệm ID: 263949

Giá trị đúng của \(\lim (\sqrt[3]{{{n^3} + 9{n^2}}} - n)\) bằng

Xem đáp án

\(\begin{array}{l}\lim (\sqrt[3]{{{n^3} + 9{n^2}}} - n)\\ = \lim \dfrac{{\left( {\sqrt[3]{{{n^3} + 9{n^2}}} - n} \right)\left( {\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}} \right)}}{{\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}}}\\ = \lim \dfrac{{{n^3} + 9{n^2} - {n^3}}}{{\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}}}\\ = \lim \dfrac{{9{n^2}}}{{\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}}}\\ = \lim \dfrac{9}{{\sqrt[3]{{{{\left( {1 + \dfrac{9}{n}} \right)}^2}}} + \sqrt[3]{{1 + \dfrac{9}{n}}} + 1}} = \dfrac{9}{3} = 3\end{array}\)

Câu 29: Trắc nghiệm ID: 263950

Tính giới hạn sau: \(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\)

Xem đáp án

Ta có \(1 - \dfrac{1}{{{k^2}}} = \dfrac{{\left( {k - 1} \right)\left( {k + 1} \right)}}{{{k^2}}}\) nên ta suy ra

\(\begin{array}{l}\left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\\ = \dfrac{{1.3}}{{{2^2}}}.\dfrac{{2.4}}{{{3^2}}}...\dfrac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}} = \dfrac{{\left( {n + 1} \right)}}{{2n}}\end{array}\)

\(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right] = \lim \dfrac{{n + 1}}{{2n}} = \dfrac{1}{2}\)

Câu 30: Trắc nghiệm ID: 263951

Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}}\)

Xem đáp án

\(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}} = \dfrac{{3 + 2}}{{2.1 - 1}} = 5\)

Câu 31: Trắc nghiệm ID: 263952

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{3 - x}}{{\sqrt {x + 1 - 2} }}\,\,\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 3\end{array} \right.\)  Hàm số đã cho liên tục tại x = 3 khi m bằng :

Xem đáp án

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \dfrac{{3 - x}}{{\sqrt {x + 1}  - 2}}\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{(3 - x)\sqrt {x + 1}  + 2}}{{x - 3}}\\ = \mathop {\lim }\limits_{x \to 3} ( - \sqrt {x + 1}  + 2) =  - 4\end{array}\)

Để hàm số đã cho liên tục tại x = 3  thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f(3) \Leftrightarrow m =  - 4\)

Câu 32: Trắc nghiệm ID: 263953

Giá trị của \(\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\)

Xem đáp án

\(\begin{array}{l}\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\\ = \lim \dfrac{{{n^2}\left( {\sqrt[4]{{\dfrac{3}{{{n^5}}} + \dfrac{1}{{{n^8}}}}} - \dfrac{1}{n}} \right)}}{{{n^2}\left( {\sqrt {2 + \dfrac{3}{n} + \dfrac{1}{{{n^2}}}}  + \dfrac{1}{n}} \right)}}\\ = \lim \dfrac{{\left( {\sqrt[4]{{\dfrac{3}{{{n^5}}} + \dfrac{1}{{{n^8}}}}} - \dfrac{1}{n}} \right)}}{{\left( {\sqrt {2 + \dfrac{3}{n} + \dfrac{1}{{{n^2}}}}  + \dfrac{1}{n}} \right)}} = \dfrac{0}{{\sqrt 2 }} = 0\end{array}\)

Câu 33: Trắc nghiệm ID: 263954

Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}}\)

Xem đáp án

\(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}} = \dfrac{{\dfrac{3}{4} - \dfrac{{3\sqrt 3 }}{2}}}{{\dfrac{1}{{\sqrt 3 }}}} = \dfrac{{3\sqrt 3 }}{4} - \dfrac{9}{2}\)

Câu 34: Trắc nghiệm ID: 263955

Giá trị của \(\lim \dfrac{{n - 2\sqrt n }}{{2n}}\) bằng

Xem đáp án

\(\lim \dfrac{{n - 2\sqrt n }}{{2n}} = \lim \dfrac{{1 - \dfrac{2}{{\sqrt n }}}}{2} = \dfrac{1}{2}\)

Câu 35: Trắc nghiệm ID: 263956

Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)}  - 1}}{x}\)

Xem đáp án

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)}  - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{(2x + 1)(3x + 1)(4x + 1) - 1}}{{x.(\sqrt {(2x + 1)(3x + 1)(4x + 1)}  + 1)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{24{x^3} + 26{x^2} + 9x}}{{x.(\sqrt {(2x + 1)(3x + 1)(4x + 1)}  + 1)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{24{x^2} + 26x + 9}}{{(\sqrt {(2x + 1)(3x + 1)(4x + 1)}  + 1)}} = \dfrac{9}{2}\end{array}\)

Câu 36: Trắc nghiệm ID: 263957

Cho hình bình hành ABCD tâm I, S là điểm nằm ngoài mặt phẳng (ABCD). Tìm mệnh đề sai.

Xem đáp án

Do I là tâm hình bình hành ABCD nên \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD}  = 2\overrightarrow {SI} \) .

Câu 37: Trắc nghiệm ID: 263958

Cho chóp S. ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Điểm cách đều các đỉnh của hình chóp là:

Xem đáp án

Ta có \(\left\{ \begin{array}{l}SA \bot BC\,\,(do\,SA \bot (ABCD))\\BA \bot BC\end{array} \right.\,\, \Rightarrow BC \bot \left( {SAB} \right)\,\, \Rightarrow BC \bot SB\) . Do đó tam giác SBC vuông tại B.

Lại có \(\left\{ \begin{array}{l}SA \bot CD\\AD \bot CD\end{array} \right.\,\, \Rightarrow CD \bot (SAD)\,\, \Rightarrow CD \bot SD\) . Do đó tam giác SDC vuông tại D.

Loại A do tam giác SBC vuông tại B nên trung điểm SB không cách đều ba điểm S, B, C.

Loại C do tam giác SCD vuông tại D nên trung điểm SD không cách đều ba điểm S, C, D.

Đáp án B đúng do tam giác SBC vuông tại B có SC là cạnh huyền nên trung điểm SC cách đều ba điểm S, B, C; do tam giác SCD vuông tại D có SC là cạnh huyền nên trung điểm SC cáchđều ba điểm S, C, D.

Câu 39: Trắc nghiệm ID: 263960

Cho hình lập phương ABCD. A’B’C’D’ . Mặt phẳng (ACC’A’) vuông góc với mặt phẳng nào sau đây:

Xem đáp án

Do ABCD.A’B’C’D’ là hình lập phương nên ta có

\(\begin{array}{l}\left\{ \begin{array}{l}AA' \bot AD\\AA' \bot AB\end{array} \right.\,\, \Rightarrow \,AA' \bot (ABCD)\\AA' \subset (ACC'A') \Rightarrow \,\,(ABCD) \bot (ACC'A')\end{array}\)

Vậy góc giữa (ABCD) vuông góc với (ACC’A’).

Câu 40: Trắc nghiệm ID: 263961

Cho hình hộp ABCD. A’B’C’D’ có tất cả các cạnh bằng nhau. Điều nào sau đây đúng?

Xem đáp án

ABCD.A’B’C’D’ là hình hộp nên các mặt đều là hình bình hành, do đó chưa đủ giả thiết để chứng minh được \(AC \bot B'D'\).

Các cạnh của hình hộp đều bằng a, tứ giác ABCD là hinh bình hành cạnh a, đường chéo có thể bằng a hoặc không bằng a nên ACC’A’ là hình bình hành , chưa chắc là hình thoi.

Vậy đáp án A và B đều là đáp án đúng.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »