Lời giải của giáo viên
ToanVN.com
\(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}} = \dfrac{{\dfrac{3}{4} - \dfrac{{3\sqrt 3 }}{2}}}{{\dfrac{1}{{\sqrt 3 }}}} = \dfrac{{3\sqrt 3 }}{4} - \dfrac{9}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình tứ diện ABCD có AB , BC, CD đôi một vuông góc . Điểm cách đều bốn điểm A, B, C, D là:
Dãy số nào dưới đây có giới hạn bằng \( + \infty \)?
Chọn giá trị của \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt[3]{{2x + 8}} - 2}}{{\sqrt {3x + 4} - 2}}\)liên tục tại điểm x = 0
Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1} - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1
Tính \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}\) bằng?
Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}}\)
Giá trị của \(\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1} + n}}\)
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Khi đó góc giữa AB và CD bằng:
Cho hình hộp ABCD. A’B’C’D’ có tất cả các cạnh bằng nhau. Điều nào sau đây đúng?
Cho hình lập phương ABCDEFGH, góc giữa hai đường thẳng AB và GH là:
Tính giới hạn sau: \(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)} - 1}}{x}\)
