Lời giải của giáo viên
ToanVN.com
Ta có \(1 - \dfrac{1}{{{k^2}}} = \dfrac{{\left( {k - 1} \right)\left( {k + 1} \right)}}{{{k^2}}}\) nên ta suy ra
\(\begin{array}{l}\left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\\ = \dfrac{{1.3}}{{{2^2}}}.\dfrac{{2.4}}{{{3^2}}}...\dfrac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}} = \dfrac{{\left( {n + 1} \right)}}{{2n}}\end{array}\)
\(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right] = \lim \dfrac{{n + 1}}{{2n}} = \dfrac{1}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình tứ diện ABCD có AB , BC, CD đôi một vuông góc . Điểm cách đều bốn điểm A, B, C, D là:
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Khi đó góc giữa AB và CD bằng:
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}}\)
Giá trị của \(\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1} + n}}\)
Dãy số nào dưới đây có giới hạn bằng \( + \infty \)?
Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1} - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1
Chọn giá trị của \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt[3]{{2x + 8}} - 2}}{{\sqrt {3x + 4} - 2}}\)liên tục tại điểm x = 0
Cho hình hộp ABCD. A’B’C’D’ có tất cả các cạnh bằng nhau. Điều nào sau đây đúng?
Cho hình lập phương ABCDEFGH, góc giữa hai đường thẳng AB và GH là:
Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}}\)
Tính \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}\) bằng?
Cho hàm số \(f(x) = \dfrac{{\sqrt x - 1}}{{x - 1}}\). Tìm khẳng định đúng trong các khẳng định sau:
(1) \(f(x)\) gián đoạn tại x = 1
(2) \(f(x)\) liên tục tại x = 1
(3) \(\mathop {\lim }\limits_{x \to 1} f(x) = \dfrac{1}{2}\)
