Trong mặt phẳng với hệ trục tọa độ Oxy, cho 2 đường tròn (C) và (C’) có phương trình lần lượt là: \({x^2} + {\left( {y - 2} \right)^2} = 4\) và \({x^2} + {y^2} - 2x + 2y = 23\). Gọi (C’) là ảnh của (C) qua phép đồng dạng tỉ số k, khi đó giá trị k là:
A. \(\frac{5}{2}\)
B. \(\frac{{23}}{4}\)
C. \(\frac{4}{{23}}\)
D. \(\frac{2}{5}\)
Lời giải của giáo viên
ToanVN.com
(C) có bán kính R = 2
\(\left( {C'} \right)\) có bán kính \(R' = \sqrt {{1^2} + {{\left( { - 1} \right)}^2} - \left( { - 23} \right)} = 5\)
Vậy tỉ số đồng dạng là \(k = \frac{{R'}}{R} = \frac{5}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.
Cho lục giác đều ABCDEF như hình vẽ.

Phép quay tâm O góc \({120^0}\) biến tam giác AOE thành tam giác nào?
Cho tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\) Hỏi có thể lập được bao nhiêu chữ số có 4 chữ số khác nhau và chia hết cho 3.
Tìm tập xác định của hàm số \(y = f(x) = 2\cot (2x - \dfrac{\pi }{3}) + 1\).
Cho các chữ số 1, 2, 3, …,9. Từ các số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.
Tìm nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\).
Cho \(\Delta ABC\) có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Phép vị tự nào sau đây biến \(\Delta ABC\) thành \(\Delta NPM\)?
Với những giá trị nào của \(x\) thì giá trị của các hàm số tương ứng sau bằng nhau \(y = \tan 3x\) và \(\tan (\dfrac{\pi }{3} - 2x)\)
Hàm số nào sau đây có đồ thị không là đường hình sin?
Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận sân nhà và 2 trận sân khách. Số trận đấu được sắp xếp là:
Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ (các bông hoa xem như đôi một khác nhau). Hỏi có bao nhiêu cách chọn ra một bó hoa gồm 7 bông biết các bông hoa được chọn tùy ý
Cho lục giác đều ABCDEF tâm O. Ảnh của tam giác COD qua phép tịnh tiến theo véctơ \(\overrightarrow {BA} \) là: