Đề thi HK1 môn Toán 11 năm 2021-2022 - Trường THPT Mạc Đỉnh Chi

Đề thi HK1 môn Toán 11 năm 2021-2022 - Trường THPT Mạc Đỉnh Chi

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 68 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263282

Giải phương trình  \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).

Xem đáp án

Ta có: \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\) \( \Leftrightarrow 2x = {80^0} + k{180^0} \) \(\Leftrightarrow x = {40^0} + k{90^0}\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 2: Trắc nghiệm ID: 263283

Giải phương trình \(1 + \cos x = 0\).

Xem đáp án

Ta có: \(1 + \cos x = 0\) \( \Leftrightarrow \cos x =  - 1 \) \(\Leftrightarrow x = \pi  + k2\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 3: Trắc nghiệm ID: 263284

Một hội nghị bàn tròn có các phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên, sao cho những người có cùng quốc tịch thì ngồi gần nhau:

Xem đáp án

Phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ chia làm ba nhóm có 2 cách xếp theo nhóm là Mỹ – Anh – Pháp, Mỹ - Pháp – Anh.

Trong nhóm người Anh có 3.2.1 = 6 cách xếp.

Trong nhóm người Pháp 5!=120 cách xếp .

Trong nhóm người Mỹ có 7!=5040 cách xếp.

Vậy có  2.6.120.5040=7257600 cách chọn.

Chọn đáp án A.

Câu 4: Trắc nghiệm ID: 263285

Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

Xem đáp án

Một số gồm 5 chữ lập thành từ các chữ số A={1, 2, 3, 4, 5, 6, 7} có dạng:

\(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}} \), với \({a_i} \in A,i = \overline {1,5} \).

Chữ số đầu tiên bằng 3 nên a1  = 3 có 1 cách chọn.

a2 có 7 cách chọn, a3 có 7 cách chọn, a4 có 7 cách chọn, a5 có 7 cách chọn.

Vậy có \({7^4} = 2401\) cách chọn.

Chọn đáp án D

Câu 5: Trắc nghiệm ID: 263286

Cho dãy số \(({u_n})\)có \({u_1} = \dfrac{1}{4};d = \dfrac{{ - 1}}{4}\). Khẳng định nào sau đây đúng ?

Xem đáp án

Ta có

\({S_5} = n{u_1} + \dfrac{{n(n - 1)}}{2}d = 5.\dfrac{1}{4} + \dfrac{{5.4}}{2}.\left( { - \dfrac{1}{4}} \right) =  - \dfrac{5}{4}\)

Chọn C.

Câu 6: Trắc nghiệm ID: 263287

Cho dãy số \( - 1;x;0,64\). Chọn \(x\) để dãy số đã cho theo thứ tự lập thành cấp số nhân

Xem đáp án

\(\left\{ \begin{array}{l}x =  - 1.q\\0,64 = x.q\end{array} \right. \Rightarrow 0,64 =  - {x^2}\)(vô lí)

Chọn A.

Câu 7: Trắc nghiệm ID: 263288

Cho đường thẳng \(d:3x + y + 3 = 0\). Viết phương trình của đường thẳng \(d'\) là ảnh của \(d\) qua phép dời hình có được bằng cách thược hiện liên tiếp phép quay tâm \(I\left( {1;2} \right)\), góc \( - {180^0}\)   và phép tịnh tiến theo vec tơ \(\overrightarrow v  = \left( { - 2;1} \right)\).

Xem đáp án

Phép quay tâm \(I\left( {1;2} \right)\), góc \( - {180^0}\) là phép đối xứng tâm \(I\left( {1;2} \right)\).

Dễ thấy \(I\left( {1;2} \right) \notin d\) nên qua phép đối xứng tâm, d biến thành \(d''//d\).

Qua phép tính tiến theo \(\overrightarrow v \) thì \(d''\) biến thành \(d'//d''\).

Do đó \(d'//d''//d\) nên trong các đáp án chỉ có A thỏa mãn.

Chọn A

Câu 8: Trắc nghiệm ID: 263289

Phát biểu nào sau đây là sai?

Xem đáp án

Phép dời hình biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm đó nên D sai.

Chọn D

Câu 9: Trắc nghiệm ID: 263290

Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {3;5} \right)\) và phép vị tự  \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)

Xem đáp án

Đường tròn (C ) có tâm \(I\left( {3; - 2} \right)\) bán kính \(R = \sqrt {{3^2} + {{\left( { - 2} \right)}^2} - \left( { - 23} \right)}  = 6\).

Gọi \(I' = {T_{\overrightarrow v }}\left( I \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = 3 + 3 = 6\\y' =  - 2 + 5 = 3\end{array} \right.\) \( \Rightarrow I'\left( {6;3} \right)\)

\(I'' = {V_{\left( {O; - \frac{1}{3}} \right)}}\left( I \right)\) \( \Rightarrow \left\{ \begin{array}{l}x'' =  - \frac{1}{3}.6 =  - 2\\y'' =  - \frac{1}{3}.3 =  - 1\end{array} \right.\) \( \Rightarrow I''\left( { - 2; - 1} \right)\)

(C’) có tâm \(I''\left( { - 2; - 1} \right)\) bán kính \(R' = \left| { - \frac{1}{3}} \right|R = \frac{1}{3}.6 = 2\) nên có phương trình:

\(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4.\)

Chọn A

Câu 10: Trắc nghiệm ID: 263291

Giải phương trình \(\sin 6x - \cos 4x = 0\).

Xem đáp án

Ta có: \(\sin 6x - \cos 4x = 0\) \( \Leftrightarrow \sin 6x = \cos 4x\)\( \Leftrightarrow \cos \left( {6x - \dfrac{\pi }{2}} \right) = \cos 4x\)

\( \Leftrightarrow \left[ \begin{array}{l}6x - \dfrac{\pi }{2} = 4x + k2\pi \\6x - \dfrac{\pi }{2} =  - 4x + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 11: Trắc nghiệm ID: 263292

Giải phương trình \(1 - 2\sin x = 0\).

Xem đáp án

Ta có: \(1 - 2\sin x = 0 \Leftrightarrow \sin x = \dfrac{1}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 12: Trắc nghiệm ID: 263293

Cho phương trình \(\cos 4x = 3m - 5\). Tìm \(m\) để phương trình đã cho có nghiệm.

Xem đáp án

Phương trình \(\cos 4x = 3m - 5\) có nghiệm khi và chỉ khi: \( - 1 \le 3m - 5 \le 1 \Leftrightarrow \dfrac{4}{3} \le m \le 2\)

Chọn đáp án B.

Câu 13: Trắc nghiệm ID: 263294

Xét tính tăng , giảm và bị chặn của dãy số \(({u_n})\) biết \({u_n} = \dfrac{{2n - 13}}{{3n - 2}}\)

Xem đáp án

\(\forall n \in {N^*},{u_{n + 1}} - {u_n} = \dfrac{{2(n + 1) - 3}}{{3(n + 1) - 2}} - \dfrac{{2n - 3}}{{3n - 2}} \)\(\,= \dfrac{{35}}{{(3n + 1)(3n - 2)}} > 0.\)

Và \({u_n} = \dfrac{{2n - 13}}{{3n - 2}} = \dfrac{2}{3} - \dfrac{{35}}{{3(3n - 2)}} \le \dfrac{2}{3}\)

Chọn A.

Câu 14: Trắc nghiệm ID: 263295

Cho a,b,c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng ?

Xem đáp án

Ta có

\(\begin{array}{l}b = \dfrac{{a + c}}{2}\\ \Leftrightarrow c = 2b - a \\\Leftrightarrow {a^2} - {c^2} = 4ab - 4{b^2}\\ \Leftrightarrow {a^2} - {c^2} = 4ab - 2b(a + c)\\ \Leftrightarrow {a^2} - {c^2} = 2ab - 2bc\end{array}\)

Chọn B.

Câu 15: Trắc nghiệm ID: 263296

Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là:

Xem đáp án

Phép đồng dạng chưa chắc biến đường thẳng thành đường thẳng song song hoặc trùng với nó nên loại B, C.

Phép dời hình thì có phép quay không biến đường thẳng thành đường thẳng song song hoặc trùng với nó nên loại D.

Chọn A

Câu 16: Trắc nghiệm ID: 263297

Cho \(\overrightarrow v  = \left( { - 2;4} \right)\) và điểm \(M'\left( {5;3} \right)\). Biết \(M'\) là ảnh của \(M\) qua phép tịnh tiến \({T_{\overrightarrow v }}\). Tìm tọa độ điểm \(M\).

Xem đáp án

Ta có: \({T_{\overrightarrow v }}\left( M \right) = M'\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_{M'}} = {x_M} + \left( { - 2} \right)\\{y_{M'}} = {y_M} + 4\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}5 = {x_M} - 2\\3 = {y_M} + 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_M} = 7\\{y_M} =  - 1\end{array} \right.\)

Vậy \(M\left( {7; - 1} \right)\).

Câu 17: Trắc nghiệm ID: 263298

Một thầy giáo có 5 cuốn sách toán, 6 cuốn sách văn, 7 cuốn sách Anh văn và các cuốn sách đôi một khác nhau. Thầy giáo muốn tặng 6 cuốn sách cho 6 học sinh. Hỏi thầy giáo có bao nhiêu cách tặng nếu thầy giáo muốn sau khi tặng xong mỗi thể loại còn lại ít nhất 1 cuốn:

Xem đáp án

Có tất cả 18 cuốn. Số cách chọn sao cho không còn cuốn toán nào là \(C_5^5.C_{13}^1 = 13\).

Số cách chọn sao cho không còn cuốn văn nào là \(C_6^6 = 1\).

Do có 6 cuốn anh nên không thể không chọn được cuốn anh nào.

Số cách chọn để sau khi tặng cong mỗi loại còn ít nhất 1 cuốn là 18564 – (1+13) = 18550.

Do tặng sách cho 6 học sinh khác nhau  và 6 cuốn sách là khác nhau nên có 6!  cách.

Vậy có 18550.6!=13356000.

Chọn đáp án A.

Câu 18: Trắc nghiệm ID: 263299

Cho phương trình \(2\cos 4x - {\rm{sin4}}x = m\) . Tìm tất cả các giá trị của \(m\) để phương trình đã cho có nghiệm.

Xem đáp án

Phương trình \(2\cos 4x - {\rm{sin4}}x = m\) có nghiệm khi và chỉ khi: \({2^2} + {\left( { - 1} \right)^2} \ge {m^2} \Leftrightarrow {m^2} \le 5\)

\( \Leftrightarrow  - \sqrt 5  \le m \le \sqrt 5 \).

Chọn đáp án C.

Câu 19: Trắc nghiệm ID: 263300

Trong khai triển \({\left( {8{a^2} - \dfrac{1}{2}b} \right)^6}\) hệ số của số hạng chứa \({a^6}{b^3}\) là:

Xem đáp án

Theo nhị thức Newton, ta có \(C_6^k.{\left( {8{a^2}} \right)^{6 - k}}.{\left( { - \dfrac{1}{2}b} \right)^k}\)có chứa \({a^6}{b^3}\) , suy ra k = 3  nên hệ số đó là \(C_6^3{.8^3}.\left( { - {{\dfrac{1}{2}}^3}} \right).{a^6}{b^3} =  - 1280{a^6}{b^3}\).

Chọn đáp án C.

Câu 20: Trắc nghiệm ID: 263301

Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí, và một thủ quỹ được chọn từ 16 thành viên là:

Xem đáp án

Chọn trưởng ban có 16 cách chọn, ban phó có 15 cách chọn, thư kí có 14 cách chọn,  thủ quỹ có 13 cách chọn. Vậy só cách chọn trên là chỉnh hợp chập 4 của 16 phần tử là \(A_{16}^4 = \dfrac{{16!}}{{12!}}\) .

Chọn đáp án D.

Câu 21: Trắc nghiệm ID: 263302

Trong mặt phẳng Oxy, tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)

Xem đáp án

\(\left( C \right)\) có tâm \(I\left( {2; - 5} \right)\) bán kính \(R = \sqrt 5 \).

Gọi \(I' = {Q_{\left( {O;{{180}^0}} \right)}}\left( I \right)\) thì \(I'\) đối xứng với \(I\) qua \(O\)

\( \Rightarrow \left\{ \begin{array}{l}{x_{I'}} =  - {x_I} =  - 2\\{y_{I'}} =  - {y_I} = 5\end{array} \right. \Rightarrow I'\left( { - 2;5} \right)\)

Vậy \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 5\)

Đáp án B

Câu 22: Trắc nghiệm ID: 263303

Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?

Xem đáp án

\(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\) và bán kính \(R = 3\).

\(\begin{array}{l}I' = {T_{\overrightarrow v }}\left( I \right) \Rightarrow \overrightarrow {II'}  = \overrightarrow v \\ \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = {x_I} + 3 = 3 + 3 = 6\\{y_{I'}} = {y_I} - 2 =  - 2 - 2 =  - 4\end{array} \right.\\ \Rightarrow I'\left( {6; - 4} \right)\end{array}\)

Vậy \(\left( {C'} \right):{\left( {x - 6} \right)^2} + {\left( {y + 4} \right)^2} = 9\)

Đáp án C

Câu 23: Trắc nghiệm ID: 263304

Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in3}}x + \sqrt 3 \cos 3x = 2\sin x\)

Xem đáp án

Ta có: \({\mathop{\rm s}\nolimits} {\rm{in3}}x + \sqrt 3 \cos 3x = 2\sin x \) \( \Leftrightarrow 2\left( {\frac{1}{2}\sin 3x + \frac{{\sqrt 3 }}{2}\cos 3x} \right) = 2\sin x\) \(\Leftrightarrow 2\sin \left( {3x + \dfrac{\pi }{3}} \right) = 2\sin x\)

\( \Leftrightarrow \sin \left( {3x + \dfrac{\pi }{3}} \right) = \sin x\) \( \Leftrightarrow \left[ \begin{array}{l}3x + \dfrac{\pi }{3} = x + k2\pi \\3x + \dfrac{\pi }{3} = \pi  - x + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{6} + k\pi \\x = \dfrac{\pi }{6} + k\dfrac{\pi }{2}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 24: Trắc nghiệm ID: 263305

Có bao nhiêu cách sắp xếp 4 người A, B, C, D lên 3 toa tàu, biết mỗi toa có thể chứa 4 người .

Xem đáp án

Người thứ nhất có 3 cách chọn, ngưới thứ hai có 3 cách chọn, người thứ ba có 3 cách chọn, người thứ tư có 3 cách chọn. Vậy có \({3^4} = 81\) .

Chọn đáp án A.

Câu 25: Trắc nghiệm ID: 263306

Có 7 nhà toán học nam, 4 nhà toán học nữ, 5 nhà vật lý nam. Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý.

Xem đáp án

Trường hợp 1: chọn 1 nhà vật lí có \(C_5^1\left( {C_4^1.C_7^1 + C_4^2} \right) = 170\).

Trường hợp 2: chọn 2 nhà vật lí có \(C_5^2C_4^1 = 40\)

Vậy có 210 cách chọn để lập ra đoàn công tác.

Chọn đáp án D.

Câu 26: Trắc nghiệm ID: 263307

Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm \({A_1},{A_2},...,{A_{2n}}\) gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm \({A_1},{A_2},...,{A_{2n}}\). Tìm n?

Xem đáp án

Số tam giác được tạo thành bằng cách chọn 3 điểm bất kì trong 2n điểm nên số tam giác là \(C_{2n}^3\)
Vì đây là đa giác đều 2n cạnh nên đa giác nội tiếp đường trò suy ra có n đường kính 
Một hình chữ nhật có hai đường chéo là hai đường kính nên muốn có một HCN thì phải lấy hai đường kính bất kì trong n đường kính.Ta có \(C_n^2\)  .

Vậy ta có \(C_{2n}^3 = 20.C_n^2\,\, \Leftrightarrow \,\,4{n^2} - 36n + 32 = 0\,\, \Leftrightarrow \,\,\left[ \begin{array}{l}n = 1\\n = 8\end{array} \right.\).Loại n = 1.

Chọn đáp án C

Câu 27: Trắc nghiệm ID: 263308

Tìm số hạng lớn nhất của dãy số \(\left( {{a_n}} \right)\) có \({a_n} =  - {n^2} + 4n + 11,\,\,\forall n \in N*\) .

Xem đáp án

\({a_n} =  - {n^2} + 4n + 11\)\(\, =  - {n^2} + 4n - 4 + 15 =  - {\left( {n - 2} \right)^2} + 15 \le 15\)

Dấu “=” xảy ra khi và chỉ khi \(n - 2 = 0 \Leftrightarrow n = 2\)

Vậy số hạng lớn nhất của dãy số là số hạng bằng 15.

Chọn B.

Câu 28: Trắc nghiệm ID: 263309

Cho dãy số \(({u_n})\)với :\({u_n} = \dfrac{{ - n}}{{n + 1}}\) . Khẳng định nào sau đây là đúng ?

Xem đáp án

Ta có

\({u_1} = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2}\);

\({u_2} = \dfrac{{ - 2}}{{2 + 1}} = \dfrac{{ - 2}}{3}\);

\({u_3} = \dfrac{{ - 3}}{{3 + 1}} = \dfrac{{ - 3}}{4}\);

\({u_4} = \dfrac{{ - 4}}{{4 + 1}} = \dfrac{{ - 4}}{5}\);

\({u_5} = \dfrac{{ - 5}}{{5 + 1}} = \dfrac{{ - 5}}{6}\).

Chọn B.

Câu 29: Trắc nghiệm ID: 263310

Cho dãy số \(\left( {{x_n}} \right)\) xác định bởi \({x_1} = 5\) và \({x_{n + 1}} = {x_n} + n,\,\,\forall n \in N*\). Số hạng tổng quát của dãy số \(\left( {{x_n}} \right)\) là:

Xem đáp án

\(\begin{array}{l}{x_1} = 5\\{x_2} = {x_1} + 1 = 5 + 1\\{x_3} = {x_2} + 2 = 5 + 1 + 2\\{x_4} = {x_3} + 3 = 5 + 1 + 2 + 3\\...\end{array}\)

Dự đoán \({x_n} = 5 + 1 + 2 + 3 + ... + n - 1 \)\(\,= 5 + \dfrac{{n\left( {n - 1} \right)}}{2}\,\,\,\left( * \right)\,\,\forall n \in N*\)

Chứng minh bằng phương pháp quy nạp.

(*) đúng với n = 1.

Giả sử (*) đúng đến n = k, tức là \({x_k} = 5 + \dfrac{{k\left( {k - 1} \right)}}{2}\,,\) ta chứng minh (*) đúng đến n = k + 1, tức là cần chứng minh \({x_{k + 1}} = 5 + \dfrac{{\left( {k + 1} \right)k}}{2}\).

Ta có: \({x_{k + 1}} = {x_k} + k = 5 + \dfrac{{k\left( {k - 1} \right)}}{2}\, + k = 5 + \dfrac{{k\left( {k - 1} \right) + 2k}}{2} \)\(\,= 5 + \dfrac{{k\left( {k - 1 + 2} \right)}}{2} = 5 + \dfrac{{\left( {k + 1} \right)k}}{2}\).

Vậy (*) đúng với mọi \(n \in N*\).

Vậy \({x_n} = 5 + \dfrac{{n\left( {n - 1} \right)}}{2} = \dfrac{{{n^2} - n + 10}}{2}\,\,\,\,\,\forall n \in N*\)

Chọn A.

Câu 30: Trắc nghiệm ID: 263311

Giả sử phép dời hình \(f\) biến tam giác \(ABC\) thành tam giác A’B’C’. Xét các mệnh đề sau:

(I): Trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’

(II): Trực tâm tam giác ABC biến thành trực tâm tam giác A’B’C’

(III): Tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC lần lượt biến thành tâm đường tròn ngoại tiếp, nội tiếp tam giác A’B’C’.

Số mệnh đề đúng trong 3 mệnh đề trên là:

Xem đáp án

Sử dụng chú ý a trang 21 SGK hình học 11:

Nếu một phép dời hình biến tam giác ABC thành tam giác A’B’C’ thì nó cũng biến trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của tam giác ABC tương ứng thành trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của tam giác A’B’C’.

Vậy cả 3 mệnh đề đều đúng.

Đáp án A

Câu 31: Trắc nghiệm ID: 263312

Cho \(\Delta ABC\) có trọng tâm \(G\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(AB,BC,CA\). Phép vị tự nào sau đây biến \(\Delta ABC\) thành \(\Delta NPM\)?

Xem đáp án

Gọi G là trọng tâm tam giác ABC. Khi đó

\(\overrightarrow {GN}  =  - \frac{1}{2}\overrightarrow {GA} \) \( \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( A \right) = N\)

\(\overrightarrow {GP}  =  - \frac{1}{2}\overrightarrow {GB} \) \( \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( B \right) = P\)

\(\overrightarrow {GM}  =  - \frac{1}{2}\overrightarrow {GC} \) \( \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( C \right) = M\)

Vậy \({V_{\left( {G, - \frac{1}{2}} \right)}}\left( {\Delta ABC} \right) = \Delta NPM\)

Đáp án C

Câu 32: Trắc nghiệm ID: 263313

Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F không ngồi cạnh nhau:

Xem đáp án

Trường hợp 1: A ngồi hai đầu ghế có  2.4.4.3.2.1= 192.

Trường hợp 2: A ngồi chỗ bất kì bên trong dãy có 4.3.4.3.2.1= 288.

Vậy có 192+ 288 = 480 cách chọn.

Chọn đáp án A.

Câu 33: Trắc nghiệm ID: 263314

Cho một tập hợp A gồm n phần tử ( \(n \ge 4\)). Biết số tập con gồm 4 phần tử của A gấp 20 lần số tập con gồm hai phần từ của A. Tìm n

Xem đáp án

Số tập con gồm 4 phần tử là \(C_n^4\) .

Số tập con gồm 2 phần tử là \(C_n^2\) .

Do đó ta có

\(\begin{array}{l}C_n^4 = 20C_n^2\\\Leftrightarrow \,\,\dfrac{1}{{24\left( {n - 4} \right)!}} = \dfrac{{20}}{{2\left( {n - 2} \right)!}}\\ \Leftrightarrow \dfrac{1}{{24}} = \dfrac{{20}}{{2\left( {n - 2} \right)\left( {n - 3} \right)}}\\ \Leftrightarrow 2{n^2} - 10n + 12 = 480 \Leftrightarrow \left[ \begin{array}{l}n = 18\\x =  - 13\end{array} \right.\end{array}\)

Chọn đáp án C.

Câu 34: Trắc nghiệm ID: 263315

Giải phương trình \({\rm{sin3}}x - \sin x = 0\).

Xem đáp án

Ta có: \({\rm{sin3}}x - \sin x = 0 \Leftrightarrow \sin 3x = \sin x\)

\(\left[ \begin{array}{l}3x = x + k2\pi \\3x = \pi  - x + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \dfrac{\pi }{4} + k\dfrac{\pi }{2}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 35: Trắc nghiệm ID: 263316

Tìm giá trị nhỏ nhất \(m\) của hàm số \(y = {\sin ^2}x - 4{\cos ^2}x + 9\).

Xem đáp án

Ta có: \(y = {\sin ^2}x - 4{\cos ^2}x + 9 \) \(= {\sin ^2}x - 4\left( {1 - {{\sin }^2}x} \right) + 9\)

\( = 5{\sin ^2}x + 5\) \( = 5\left( {{{\sin }^2}x + 1} \right) \ge 5\left( {0 + 1} \right) = 5\)

Chọn đáp án B.

Câu 36: Trắc nghiệm ID: 263317

Trong mặt phẳng Oxy cho đường tròn \(\left( C \right):{x^2} + {y^2} = 4\) và đường thẳng \(d:x - y + 2 = 0\). Gọi M là điểm thuộc đường tròn (C) sao cho khoảng cách đến d là lớn nhất. Phép vị tự tâm O tỉ số \(k = \sqrt 2 \) biến điểm M thành điểm \(M'\) có tọa độ là?

Xem đáp án

(C ) có tâm O(0;0) bán kính R=2.

Gọi d’ là đường thẳng đi qua O và vuông góc với d.

 \(\overrightarrow {{n_d}}  = \left( {1; - 1} \right)\) là VTPT của d nên \(\overrightarrow {{n_{d'}}}  = \left( {1;1} \right)\) là VTPT của d’.

Do đó \(d':x + y = 0\).

M là giao điểm của d’ và (C) nên tọa độ của M thỏa mãn hệ phương trình:

\(\begin{array}{l}\left\{ \begin{array}{l}x + y = 0\\{x^2} + {y^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y =  - x\\{x^2} + {x^2} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - x\\2{x^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y =  - x\\{x^2} = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - x\\x =  \pm \sqrt 2 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 ,y =  - \sqrt 2 \\x =  - \sqrt 2 ,y = \sqrt 2 \end{array} \right.\end{array}\)

Xét \({M_1}\left( {\sqrt 2 ; - \sqrt 2 } \right)\) có \(d\left( {{M_1};d} \right) = \frac{{\left| {\sqrt 2  + \sqrt 2  + 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = 2 + \sqrt 2 \)

Xét \({M_2}\left( { - \sqrt 2 ;\sqrt 2 } \right)\) có \(d\left( {{M_2};d} \right) = \frac{{\left| { - \sqrt 2  - \sqrt 2  + 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = 2 - \sqrt 2 \)

Vì \(d\left( {{M_1};d} \right) > d\left( {{M_2};d} \right)\) nên \(M \equiv {M_1}\left( {\sqrt 2 ; - \sqrt 2 } \right)\).

\({V_{\left( {O;\sqrt 2 } \right)}}\left( M \right) = M'\) \( \Rightarrow \left\{ \begin{array}{l}{x_{M'}} = \sqrt 2 {x_M} = \sqrt 2 .\sqrt 2  = 2\\{y_{M'}} = \sqrt 2 {y_M} = \sqrt 2 .\left( { - \sqrt 2 } \right) =  - 2\end{array} \right.\).

Đáp án D

Câu 37: Trắc nghiệm ID: 263318

Hàm số nào sau đây xác định với mọi \(x \in \mathbb{R}\).

Xem đáp án

Ta có: \(\cos x \in \left[ { - 1;1} \right] \Rightarrow 3 - \cos x \in \left[ {2;4} \right]\)

\( \Rightarrow y = \dfrac{{\sin x + 1}}{{3 - \cos x}}\) luôn xác định với mọi \(x \in \mathbb{R}\).

Chọn đáp án C.

Câu 38: Trắc nghiệm ID: 263319

Cho cấp số nhân \(({u_n})\)thỏa mãn: \(\left\{ {\begin{array}{*{20}{c}}{{u_4} = \dfrac{2}{{27}}}\\{{u_3} = 243{u_8}}\end{array}} \right.\). Viết 5 số hạng đầu của cấp số

Xem đáp án

 Ta có

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{{u_4} = \dfrac{2}{{27}}}\\{{u_3} = 243{u_8}}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} = \dfrac{2}{{27}}\\{u_1}.{q^2} = 243{u_1}.{q^7}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \dfrac{2}{{27.{q^3}}}\\\dfrac{1}{{{q^5}}} = 243\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = \dfrac{1}{3}\end{array} \right. \Leftrightarrow {u_n} = 2.{\left( {\dfrac{1}{3}} \right)^{n - 1}}\end{array}\)

\({u_2} = \dfrac{2}{{{3^1}}} = \dfrac{2}{3}\);

\({u_3} = \dfrac{2}{{{3^2}}} = \dfrac{2}{9}\);

\({u_4} = \dfrac{2}{{{3^3}}} = \dfrac{2}{{27}}\);

\({u_5} = \dfrac{2}{{{3^4}}} = \dfrac{2}{{81}}\).

Chọn D. 

Câu 39: Trắc nghiệm ID: 263320

Xét tính bị chặn của dãy số sau: \({u_n} = 4 - 3n - {n^2}\)

Xem đáp án

Ta có \({u_n} = 4 - 3n - {n^2} =  - {\left( {n - \dfrac{3}{2}} \right)^2} + \dfrac{{25}}{4} \le \dfrac{{25}}{4}\)

Chọn C.

Câu 40: Trắc nghiệm ID: 263321

Cho lục giác đều ABCDEF tâm O. Ảnh của tam giác COD qua phép tịnh tiến theo véctơ \(\overrightarrow {BA} \) là:

Xem đáp án

\(\begin{array}{l}\overrightarrow {CO}  = \overrightarrow {BA}  \Rightarrow {T_{\overrightarrow {BA} }}\left( C \right) = O\\\overrightarrow {OF}  = \overrightarrow {BA}  \Rightarrow {T_{\overrightarrow {BA} }}\left( O \right) = F\\\overrightarrow {DE}  = \overrightarrow {BA}  \Rightarrow {T_{\overrightarrow {BA} }}\left( D \right) = E\\ \Rightarrow {T_{\overrightarrow {BA} }}\left( {\Delta COD} \right) = \Delta OFE\end{array}\)

Đáp án A

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »