Cho hàm số \(f(x) = \dfrac{{\sqrt x - 1}}{{x - 1}}\). Tìm khẳng định đúng trong các khẳng định sau:
(1) \(f(x)\) gián đoạn tại x = 1
(2) \(f(x)\) liên tục tại x = 1
(3) \(\mathop {\lim }\limits_{x \to 1} f(x) = \dfrac{1}{2}\)
A. Chỉ (1)
B. Chỉ (2)
C. Chỉ (1), (3)
D. Chỉ (2), (3)
Lời giải của giáo viên
ToanVN.com
f(x) có TXĐ: \(R\backslash \left\{ 1 \right\}\) nên f(x) gián đoạn tại x=1
\(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} {{\sqrt x - 1} \over {x - 1}} = \mathop {\lim }\limits_{x \to 1} {1 \over {\sqrt x + 1}} = {1 \over 2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình tứ diện ABCD có AB , BC, CD đôi một vuông góc . Điểm cách đều bốn điểm A, B, C, D là:
Chọn giá trị của \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt[3]{{2x + 8}} - 2}}{{\sqrt {3x + 4} - 2}}\)liên tục tại điểm x = 0
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Khi đó góc giữa AB và CD bằng:
Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1} - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}}\)
Dãy số nào dưới đây có giới hạn bằng \( + \infty \)?
Giá trị của \(\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1} + n}}\)
Tính \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}\) bằng?
Cho hình lập phương ABCDEFGH, góc giữa hai đường thẳng AB và GH là:
Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}}\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)} - 1}}{x}\)
Cho hình hộp ABCD. A’B’C’D’ có tất cả các cạnh bằng nhau. Điều nào sau đây đúng?
