Lời giải của giáo viên
ToanVN.com
\(\eqalign{
& \lim (\sqrt {{n^2} + n + 1} - n) \cr
& = \lim {{{n^2} + n + 1 - {n^2}} \over {\sqrt {{n^2} + n + 1} + n}} \cr
& = \lim {{n + 1} \over {\sqrt {{n^2} + n + 1} + n}} \cr
& = \lim {{1 + {1 \over n}} \over {\sqrt {1 + {1 \over n} + {1 \over {{n^2}}}} + 1}} \cr
& = {1 \over {\sqrt 1 + 1}} = {1 \over 2} \cr} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình tứ diện ABCD có AB , BC, CD đôi một vuông góc . Điểm cách đều bốn điểm A, B, C, D là:
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}}\)
Dãy số nào dưới đây có giới hạn bằng \( + \infty \)?
Chọn giá trị của \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt[3]{{2x + 8}} - 2}}{{\sqrt {3x + 4} - 2}}\)liên tục tại điểm x = 0
Giá trị của \(\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1} + n}}\)
Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}}\)
Tính \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}\) bằng?
Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1} - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Khi đó góc giữa AB và CD bằng:
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)} - 1}}{x}\)
Tính giới hạn sau: \(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\)
Cho \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L,\mathop {\lim }\limits_{x \to x{}_0} g(x) = M\). Chọn mệnh đề sai:
