Đề kiểm tra chương 3: Nguyên hàm - Tích phân - Toán 12

Đề kiểm tra 1 tiết chương 3: Nguyên hàm - Đề số 3

  • Hocon247

  • 25 câu hỏi

  • 45 phút

  • 581 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 146195

Cho parabol \(\left( P \right)\) có đồ thị như hình vẽ:

Tính diện tích giới hạn bởi \(\left( P \right)\) và trục hoành.

Xem đáp án
Đáp án đúng: b

Ta dễ dàng tìm được phương trình parabol là \(y={{x}^{2}}-4x+3\)

Xét phương trình hoành độ giao điểm \({{x}^{2}}-4x+3=0\Leftrightarrow \left[ \begin{align}x=1 \\x=3 \\\end{align} \right.\)

Khi đó diện tích giới hạn bởi \(\left( P \right)\) và trục hoành là \(S=-\int\limits_{1}^{3}{\left( {{x}^{2}}-4x+3 \right)dx}=\frac{4}{3}\)

Hướng dẫn giải:

Sử dụng công thức ứng dụng tích phân để tính giới hạn của hình phẳng.

Câu 2: Trắc nghiệm ID: 146196

Cho hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng \(x = 0,x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) được tính bởi:

Xem đáp án
Đáp án đúng: c

Thể tích vật thể là: \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx}  = \pi \int\limits_0^1 {{{\left( {{x^3}} \right)}^2}dx}  = \pi \int\limits_0^1 {{x^6}dx} \)

Hướng dẫn giải:

Sử dụng công thức tính thể tích khối tròn xoay tạo thành khi quay hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục \(Ox\) và hai đường thẳng \(x = a,x = b\left( {a < b} \right)\) quanh trục \(Ox\): \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)

Giải thích thêm:

Một số em sẽ chọn nhầm đáp án D vì nghĩ \({\left( {{x^3}} \right)^2} = {x^5}\) là sai.

Câu 3: Trắc nghiệm ID: 146197

Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:

Xem đáp án
Đáp án đúng: b

Đặt u = lnx \( \Rightarrow du = \dfrac{{dx}}{x}\) và \(x = {e^u}\).

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow u = 0\\x = e \Rightarrow u = 1\end{array} \right.\)

Khi đó ta có: \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx}  = \int\limits_0^1 {\dfrac{{1 - u}}{{{e^u}}}du}  = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}du} \)

Hướng dẫn giải:

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Giải thích thêm:

Một số em sau khi tính được \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}du} \) vội vàng kết luận đáp án C mà không chú ý cận.

Câu 4: Trắc nghiệm ID: 146198

Đặt \(F\left( x \right) = \int\limits_1^x {\sin tdt} \). Khi đó \(F'\left( x \right)\) là hàm số nào dưới đây?

Xem đáp án
Đáp án đúng: a

Ta có: \(F\left( x \right) = \int\limits_1^x {\sin tdt}  = \left. { - \cos t} \right|_1^x =  - \cos x + \cos 1 \Rightarrow F'\left( x \right) = \sin x\)

Hướng dẫn giải:

Sử dụng công thức tính tích phân \(F\left( b \right) - F\left( a \right) = \int\limits_a^b {f\left( x \right)dx} \).

Giải thích thêm:

HS thường nhầm lẫn \(F'\left( x \right) = \left( { - \cos x + \cos 1} \right)' = \sin x - \sin 1\)  và chọn đáp án C là sai.

Câu 5: Trắc nghiệm ID: 146199

Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) nếu:

Xem đáp án
Đáp án đúng: c

Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) nếu \(F'\left( x \right) = f\left( x \right)\).

Giải thích thêm:

HS thường chọn nhầm công thức ở đáp án D vì nhầm lẫn với đạo hàm.

Câu 6: Trắc nghiệm ID: 146200

Cho hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và có đồ thị như hình bên. Gọi \(S\) là hình phẳng giới hạn bới hai đồ thị trên và các đường thẳng \(x = a,x = b\). Mệnh đề nào sau đây đúng?

Xem đáp án
Đáp án đúng: d

Diện tích hình phẳng giới hạn bởi \(y = {f_1}\left( x \right),y = {f_2}\left( x \right),x = a,x = b\) là: \(S = \int\limits_a^b {\left| {{f_1}\left( x \right) - {f_2}\left( x \right)} \right|dx} \)

Ta thấy \({f_1}\left( x \right) > {f_2}\left( x \right)\,\,\forall x \in \left( {a;b} \right) \Rightarrow S = \int\limits_a^b {\left( {{f_1}\left( x \right) - {f_2}\left( x \right)} \right)dx} \)

Hướng dẫn giải:

Diện tích hình phẳng giới hạn bởi \(y = {f_1}\left( x \right),y = {f_2}\left( x \right),x = a,x = b\) là: \(S = \int\limits_a^b {\left| {{f_1}\left( x \right) - {f_2}\left( x \right)} \right|dx} \)

Câu 7: Trắc nghiệm ID: 146201

Tính \(I=\int\limits_{0}^{1}{{{e}^{3x}}dx}\).

Xem đáp án
Đáp án đúng: c

\(I=\int\limits_{0}^{1}{{{e}^{3x}}dx}=\frac{1}{3}\left. {{e}^{3x}} \right|_{0}^{1}=\frac{{{e}^{3}}-1}{3}\)

Hướng dẫn giải:

Sử dụng công thức \(\int\limits_{{}}^{{}}{{{e}^{kx}}dx}=\frac{1}{k}{{e}^{kx}}+C\)

Câu 8: Trắc nghiệm ID: 146202

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?

Xem đáp án
Đáp án đúng: d

Các mệnh đề A, B, C đều đúng. Mệnh đề D sai.

Giải thích thêm:

HS thường nhầm lẫn giữa đáp án D và A, cần nhớ kĩ trong khi đổi cận.

Câu 9: Trắc nghiệm ID: 146203

Nguyên hàm của hàm số \(f\left( x \right) = \sin x + \cos x\) là :

Xem đáp án
Đáp án đúng: a

\(\int\limits_{}^{} {f\left( x \right)dx}  = \int\limits_{}^{} {\left( {\sin x + \cos x} \right)dx}  =  - \cos x + \sin x + C\)

Câu 10: Trắc nghiệm ID: 146204

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \sqrt {{{\ln }^2}x + 1} .\dfrac{{\ln x}}{x}\) thoả mãn \(F\left( 1 \right) = \dfrac{1}{3}\). Giá trị của \({F^2}\left( e \right)\) là

Xem đáp án
Đáp án đúng: a

Đặt \(t = \sqrt {{{\ln }^2}x + 1}  \Rightarrow tdt = \dfrac{{\ln x}}{x}dx\)

\(\int {\sqrt {{{\ln }^2}x + 1} .\dfrac{{\ln x}}{x}dx = \int {{t^2}dt = \dfrac{{{t^3}}}{3} + C = \dfrac{{{{\left( {\sqrt {{{\ln }^2}x + 1} } \right)}^3}}}{3} + C} } \).

Vì \(F\left( 1 \right) = \dfrac{1}{3}\) nên \(C = 0\)

Vậy \({F^2}\left( e \right) = \dfrac{8}{9}\).

Hướng dẫn giải:

- Tìm \(F\left( x \right)\) thỏa mãn bài toán.

- Thay \(x = {e^2}\) vào \(F\left( x \right)\) và kết luận.

Câu 11: Trắc nghiệm ID: 146205

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?

Xem đáp án
Đáp án đúng: d

Đặt \(u = 8 + \cos x \Rightarrow du =  - \sin xdx \Rightarrow \sin xdx =  - du\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 9\\x = \dfrac{\pi }{2} \Rightarrow t = 8\end{array} \right.\) \( \Rightarrow I =  - \int\limits_9^8 {\sqrt u du}  = \int\limits_8^9 {\sqrt u du} \)

Hướng dẫn giải:

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Giải thích thêm:

Một số em tính sai vi phân \(u = 8 + \cos x \Rightarrow du = \sin xdx\) và chọn nhầm đáp án C là sai.

Câu 12: Trắc nghiệm ID: 146206

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\) , trục hoành, hai đường thẳng \(x =  - 2;x = 3\) có công thức tính là

Xem đáp án
Đáp án đúng: b

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\) , trục hoành, hai đường thẳng \(x =  - 2;x = 3\) có công thức tính là \(S = \int\limits_{ - 2}^3 {\left| {x{e^x}} \right|dx} .\)

Hướng dẫn giải:

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y =f(x)\) , trục hoành, hai đường thẳng \(x =  a;x = b\) có công thức tính là \(S = \int\limits_{ a}^b {\left| {f(x)} \right|dx} .\)

 
 
 
 
 
Câu 13: Trắc nghiệm ID: 146207

Nếu \(t = u\left( x \right)\) thì:

Xem đáp án
Đáp án đúng: a

Nếu \(t = u\left( x \right)\)thì \(dt = u'\left( x \right)dx\).

Hướng dẫn giải:

Sử dụng công thức tính vi phân $dy=y'dx$

Câu 14: Trắc nghiệm ID: 146208

Họ nguyên hàm của hàm số \(y=\cos 3x\)  là

Xem đáp án
Đáp án đúng: a

Ta có \(\int{\cos 3x\,\text{d}x}=\dfrac{\sin 3x}{3}+C.\)

Câu 15: Trắc nghiệm ID: 146209

Tìm nguyên hàm $F(x)$ của hàm số \(f(x)=6x+\sin 3x\), biết \(F(0)=\dfrac{2}{3}.\)

Xem đáp án
Đáp án đúng: d

$f(x) = 6x + \sin 3x$ $ \Rightarrow \int {f(x)dx} {\rm{\;}} = \int {(6x + \sin 3x)dx} $ $ = \int {6xdx} {\rm{\;}} + \int {\sin 3xdx}  = 3{x^2} - \dfrac{1}{3}\cos 3x + C$

$ \Rightarrow F(x) = 3{x^2} - \dfrac{1}{3}\cos 3x + C$

$F(0) = \dfrac{2}{3} \Leftrightarrow {3.0^2} - \dfrac{1}{3}.\cos 0 + C = \dfrac{2}{3} \Leftrightarrow C = 1$

$ \Rightarrow F(x) = 3{x^2} - \dfrac{{\cos 3x}}{3} + 1$

Câu 16: Trắc nghiệm ID: 146210

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{x}{{\sqrt {3{x^2} + 2} }}\).

Xem đáp án
Đáp án đúng: a

\(\int {\dfrac{x}{{\sqrt {3{{\rm{x}}^2} + 2} }}d{\rm{x}}}  = \dfrac{1}{6}\int {\dfrac{{d\left( {3{{\rm{x}}^2} + 2} \right)}}{{\sqrt {3{{\rm{x}}^2} + 2} }}}  \) \(= \dfrac{1}{3}\int {\dfrac{{d\left( {3{{\rm{x}}^2} + 2} \right)}}{{2\sqrt {3{{\rm{x}}^2} + 2} }}}  = \dfrac{1}{3}\sqrt {3{{\rm{x}}^2} + 2}  + C\)

Hướng dẫn giải:

Sử dụng phương pháp đổi biến, chú ý \(xdx = \dfrac{{d\left( {3{x^2} + 2} \right)}}{6}\)

Câu 17: Trắc nghiệm ID: 146211

Tính nguyên hàm $I = \int {\dfrac{{\ln \left( {lnx} \right)}}{x}{\rm{d}}x} $ được kết quả nào sau đây?

Xem đáp án
Đáp án đúng: c

Đặt $\ln x = t \Rightarrow dt = \dfrac{{dx}}{x}$.

Suy ra $I = \int {\dfrac{{\ln \left( {lnx} \right)}}{x}dx}  = \int {\ln t\,dt} $.

Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dt}}{t}\\v = t\end{array} \right.$. Theo công thức tính nguyên hàm từng phần, ta có:

$I = t\ln t - \int {dt} $ $ = t\ln t - t + C = \ln x.\ln \left( {\ln x} \right) - \ln x + C$.

Hướng dẫn giải:

Đặt \(\ln x = t\) rồi dùng phương pháp nguyên hàm từng phần tìm nguyên hàm hàm số thu được.

Câu 18: Trắc nghiệm ID: 146212

Tính \(I = \int {x{{\tan }^2}xdx} \) ta được:

Xem đáp án
Đáp án đúng: a

\(I = \int {x{{\tan }^2}xdx}  = \int {x\left( {\dfrac{1}{{{{\cos }^2}x}} - 1} \right)dx}  = \int {x.\dfrac{1}{{{{\cos }^2}x}}dx}  - \int {xdx}  = {I_1} - {I_2}\)

Ta có: \({I_2} = \int {xdx}  = \dfrac{{{x^2}}}{2} + {C_2},{I_1} = \int {x\dfrac{1}{{{{\cos }^2}x}}dx} \)

Đặt $\left\{ \begin{array}{l}u = x\\dv = \dfrac{1}{{{{\cos }^2}x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \tan x\end{array} \right.$

$\begin{array}{l} \Rightarrow {I_1} = x\tan x - \int {\tan xdx}  + {C_1} = x\tan x - \int {\dfrac{{\sin x}}{{\cos x}}dx}  + {C_1} \\ = x\tan x + \int {\dfrac{{d\left( {\cos x} \right)}}{{\cos x}}}  + {C_1} = x\tan x + \ln \left| {\cos x} \right| + {C_1}.\\ \Rightarrow I = x\tan x + \ln \left| {\cos x} \right| + {C_1} - \dfrac{{{x^2}}}{2} - {C_2} = x\tan x + \ln \left| {\cos x} \right| - \dfrac{{{x^2}}}{2} + C.\end{array}$

Hướng dẫn giải:

Sử dụng công thức \({\tan ^2}x = \dfrac{1}{{{{\cos }^2}x}} - 1,\) sau đó tách thành 2 nguyên hàm và sử dụng phương pháp nguyên hàm từng phần.

Câu 19: Trắc nghiệm ID: 146213

Tích phân $\int\limits_{ - 1}^5 {\left| {{x^2} - 2x - 3} \right|} dx$ có giá trị bằng:

Xem đáp án
Đáp án đúng: b

$\begin{array}{c}\int\limits_{ - 1}^5 {\left| {{x^2} - 2x - 3} \right|dx}  = \int\limits_{ - 1}^5 {\left| {(x - 3)(x + 1)} \right|dx}  =  - \int\limits_{ - 1}^3 {\left( {{x^2} - 2x - 3} \right)dx}  + \int\limits_3^5 {\left( {{x^2} - 2x - 3} \right)dx} \\ =  - \left. {\left( {\dfrac{{{x^3}}}{3} - {x^2} - 3x} \right)} \right|_{ - 1}^3 + \left. {\left( {\dfrac{{{x^3}}}{3} - {x^2} - 3x} \right)} \right|_3^5 = \dfrac{{64}}{3}.\end{array}$

Hướng dẫn giải:

Phá dấu giá trị tuyệt đối trong từng khoảng rồi tính tích phân.

Câu 20: Trắc nghiệm ID: 146214

Biết rằng \(\int\limits_0^1 {x\cos 2xdx}  = \dfrac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)\) với \(a,b,c \in Z\). Mệnh đề nào sau đây là đúng

Xem đáp án
Đáp án đúng: b

$\begin{array}{l}u\left( x \right) = x \Rightarrow u'\left( x \right) = 1\\v'\left( x \right) = \cos 2x \Rightarrow v\left( x \right) = \dfrac{{\sin 2x}}{2}\\ \Rightarrow \int\limits_0^1 {x\cos 2xdx = \left. {\dfrac{x}{2}\sin 2x} \right|_0^1}  - \dfrac{1}{2}\int\limits_0^1 {\sin 2xdx}  = \left. {\dfrac{x}{2}\sin 2x} \right|_0^1 + \left. {\dfrac{{\cos 2x}}{4}} \right|_0^1\\ = \dfrac{1}{2}\sin 2 + \dfrac{1}{4}\cos 2 - \dfrac{1}{4} = \dfrac{1}{4}\left( {2\sin 2 + \cos 2 - 1} \right)\\ \Rightarrow a = 2;b = 1;c =  - 1\end{array}$

Khi đó $a - b + c = 2 - 1 - 1 = 0$

Hướng dẫn giải:

- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \sin \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v =  - \dfrac{1}{a}\cos \left( {ax + b} \right)\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \cos \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}\sin \left( {ax + b} \right)\end{array} \right.\)

- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx}  = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)

Câu 21: Trắc nghiệm ID: 146215

Cho hai hàm số \(y = f(x)\) và \(y = g(x)\) liên tục trên đoạn \(\left[ {a;b} \right]\) với \(a < b\). Kí hiệu \({S_1}\) là diện tích hình phẳng giới hạn bởi các đường \(y = 3f(x)\), \(y = 3g(x),\,\,x = a,\,\,x = b,\,\,{S_2}\) là diện tích hình phẳng giới hạn bởi các đường \(y = f(x) - 2,\,\,y = g(x) - 2,\,\,x = a,\,\,x = b\). Khẳng định nào sau đây đúng? 

Xem đáp án
Đáp án đúng: d

Theo đề bài, ta có:

\({S_1} = \int\limits_a^b {\left| {3f(x) - 3g(x)} \right|dx}  = 3\int\limits_a^b {\left| {f(x) - g(x)} \right|dx} \),  \({S_2} = \int\limits_a^b {\left| {\left( {f(x) - 2} \right) - \left( {g(x) - 2} \right)} \right|dx}  = \int\limits_a^b {\left| {f(x) - g(x)} \right|dx} \)

\( \Rightarrow {S_1} = 3{S_2}\)

Hướng dẫn giải:

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = f(x),y = g(x)\), trục hoành và hai đường thẳng \(x = a;\,\,x = b\) được tính theo công thức : \(S = \int\limits_a^b {\left| {f(x) - g(x)} \right|dx} \).

Câu 22: Trắc nghiệm ID: 146216

Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y=\sqrt{x},\) trục hoành và đường thẳng \(x=9.\) Khi (H) quay quanh trục Ox tạo thành một khối tròn xoay có thể tích bằng:

Xem đáp án
Đáp án đúng: d

Đk: \(x\ge 0\).

Xét phương trình hoành độ giao điểm \(\sqrt{x}=0\Leftrightarrow x=0\). Khi đó \(V=\pi \int\limits_{0}^{9}{xdx}=\left. \pi \frac{{{x}^{2}}}{2} \right|_{0}^{9}=\frac{81\pi }{2}\)

Hướng dẫn giải:

Sử dụng công thức ứng dụng tích phân để tính thể tích vật tròn xoay.

Thể tích của khối tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành, đường thẳng \(x=a;\,\,x=b\) quanh $Ox$ là \(V=\pi \int\limits_{a}^{b}{{{f}^{2}}\left( x \right)dx}\).

Câu 23: Trắc nghiệm ID: 146217

Cho tích phân $I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x}  = \dfrac{{m - \pi }}{{m + \pi }}$, giá trị của $m$ bằng :

Xem đáp án
Đáp án đúng: c

Ta có : \(\left( {x\sin x + \cos x} \right)' = \sin x + x\cos x - \sin x = x\cos x\)

$ \Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x}  = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\dfrac{x}{{\cos x}}.x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}dv} $

Đặt $\left\{ \begin{array}{l}u = \dfrac{x}{{\cos x}}\\{\rm{d}}v = \dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}{\rm{d}}x\\v =  - \dfrac{1}{{x\sin x + \cos x}}\end{array} \right..$

Khi đó

$\begin{array}{l}I = \left. { - \dfrac{x}{{\cos x}}.\dfrac{1}{{x\sin x + \cos x}}} \right|_0^{\dfrac{\pi }{4}} + \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{\rm{d}}x}}{{{{\cos }^2}x}}}  = \\ = \dfrac{{ - \dfrac{\pi }{4}}}{{\dfrac{{\sqrt 2 }}{2}}}.\dfrac{1}{{\dfrac{\pi }{4}\dfrac{{\sqrt 2 }}{2} + \dfrac{{\sqrt 2 }}{2}}} + \left. {\tan x} \right|_0^{\dfrac{\pi }{4}}\\ = \dfrac{{ - \dfrac{\pi }{4}}}{{\dfrac{1}{2}\left( {\dfrac{\pi }{4} + 1} \right)}} + 1 = \dfrac{{ - 2\pi }}{{\left( {\pi  + 4} \right)}} + 1 = \dfrac{{4 - \pi }}{{4 + \pi }} \Rightarrow m = 4\end{array}$. 

Hướng dẫn giải:

- Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

- Làm xuất hiện dạng vi phân \(f'\left( x \right)dx\)sau đó đặt \(dv = f'\left( x \right)dx\).

- Đồng nhất thức.

Câu 24: Trắc nghiệm ID: 146218

Tìm họ nguyên hàm của hàm số $f(x) = {\tan ^5}x$.

Xem đáp án
Đáp án đúng: b

$I = \int {f(x)dx}  = \int {{{\tan }^5}xdx} $.

Đặt $\tan {\mkern 1mu} x = t \Rightarrow \dfrac{{dx}}{{{{\cos }^2}x}} = dt \Rightarrow ({\tan ^2}x + 1)dx = dt \Rightarrow dx = \dfrac{{dt}}{{{t^2} + 1}}$

Khi đó:

\(\begin{array}{*{20}{l}}{I = \int {{t^5}.\dfrac{{dt}}{{{t^2} + 1}}}  = \int {({t^3} - t + \dfrac{t}{{{t^2} + 1}})dt}  = \int {{t^3}dt}  - \int {tdt}  + \int {\dfrac{t}{{{t^2} + 1}}dt} }\\{ = \dfrac{1}{4}{t^4} - \dfrac{1}{2}{t^2} + \dfrac{1}{2}\int {\dfrac{{d({t^2} + 1)}}{{{t^2} + 1}}}  = \dfrac{1}{4}{t^4} - \dfrac{1}{2}{t^2} + \dfrac{1}{2}\ln \left| {{t^2} + 1} \right| + C}\\{ = \dfrac{1}{4}{{\tan }^4}x - \dfrac{1}{2}{{\tan }^2}x + \dfrac{1}{2}\ln \left( {{{\tan }^2}x + 1} \right) + C}\\{ = \dfrac{1}{4}{{\tan }^4}x - \dfrac{1}{2}{{\tan }^2}x + \dfrac{1}{2}\ln \left( {\dfrac{1}{{{{\cos }^2}x}}} \right) + C}\\{ = \dfrac{1}{4}{{\tan }^4}x - \dfrac{1}{2}{{\tan }^2}x - \ln \left| {\cos x} \right| + C}\end{array}\)

Hướng dẫn giải:

Đặt \(t = \tan x\) rồi tính \(dx\) theo \(dt\) và thay vào tìm nguyên hàm.

Câu 25: Trắc nghiệm ID: 146219

Cho hàm số \(y = \frac{{x - {m^2}}}{{x + 1}}\) (với m là tham số khác 0) có đồ thị là \(\left( C \right)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn \(S = 1\)?

Xem đáp án
Đáp án đúng: a

TXĐ: \(D = R\backslash \left\{ { - 1} \right\}\). Ta có \(y' = \frac{{1 + {m^2}}}{{{{\left( {x + 1} \right)}^2}}} > 0\,\,\forall x \ne  - 1 \Rightarrow \) Hàm số đồng biến trên \(\left( { - \infty ; - 1} \right);\,\,\left( { - 1; + \infty } \right)\).

\(y = 0 \Rightarrow x = {m^2} \Rightarrow \left( C \right)\) cắt trục hoành tại điểm \(A\left( {{m^2};0} \right)\).

\(x = 0 \Rightarrow y =  - {m^2} \Rightarrow \left( C \right)\) cắt trục tung tại điểm \(B\left( {0; - {m^2}} \right)\).

Với $x\in [0;m^2]$ thì $\frac{{x - {m^2}}}{{x + 1}} < \frac{{{m^2} - {m^2}}}{{{m^2} + 1}} = 0$ (do hàm số đồng biến).

Suy ra $\left| {\frac{{x - {m^2}}}{{x + 1}}} \right| = - \frac{{x - {m^2}}}{{x + 1}}$

Khi đó diện tích hình phẳng giới hạn bởi đồ thị hàm số \(\left( C \right)\) và hai trục tọa độ là:

\(\begin{array}{l}S = \int\limits_0^{{m^2}} {\left| {\frac{{x - {m^2}}}{{x + 1}}} \right|dx} \\ =  - \int\limits_0^{{m^2}} {\frac{{x - {m^2}}}{{x + 1}}dx}  \\ = - \int\limits_0^{{m^2}} {\frac{{x + 1 - 1 - {m^2}}}{{x + 1}}dx} \\= - \int\limits_0^{{m^2}} {\left( {1 - \frac{{1 + {m^2}}}{{x + 1}}} \right)dx}\\=  - \left[ {\int\limits_0^{{m^2}} {dx}  - \int\limits_0^{{m^2}} {\frac{{1 + {m^2}}}{{x + 1}}} dx} \right]  \\= - \left[ {\left. x \right|_0^{{m^2}} - \left( {1 + {m^2}} \right)\left. {\ln \left| {x + 1} \right|} \right|_0^{{m^2}}} \right] \\= - \left[ {{m^2} - \left( {1 + {m^2}} \right)\ln \left( {{m^2} + 1} \right)} \right]\\= \left( {1 + {m^2}} \right)\ln \left( {{m^2} + 1} \right) - {m^2} = 1\\ \Leftrightarrow \left( {{m^2} + 1} \right)\ln \left( {{m^2} + 1} \right) - {m^2} - 1 = 0\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {\ln \left( {{m^2} + 1} \right) - 1} \right] = 0\\ \Leftrightarrow \ln \left( {{m^2} + 1} \right) = 1 \Leftrightarrow {m^2} + 1 = e \Leftrightarrow m =  \pm \sqrt {e - 1} \end{array}\)

Hướng dẫn giải:

Sử dụng công thức ứng dụng tích phân để tính diện tích hình phẳng.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »