Câu hỏi Đáp án 3 năm trước 87

Tìm họ nguyên hàm của hàm số $f(x) = {\tan ^5}x$.

A.

$\int {f(x)dx = \dfrac{1}{4}{{\tan }^4}x}  - \dfrac{1}{2}{\tan ^2}x + \ln \left| {\cos x} \right| + C.$


B.

$\int {f(x)dx = \dfrac{1}{4}{{\tan }^4}x}  - \dfrac{1}{2}{\tan ^2}x - \ln \left| {\cos x} \right| + C.$


Đáp án chính xác ✅

C.

$\int {f(x)dx = \dfrac{1}{4}{{\tan }^4}x}  + \dfrac{1}{2}{\tan ^2}x - \ln \left| {\cos x} \right| + C.$


D.

$\int {f(x)dx = \dfrac{1}{4}{{\tan }^4}x}  + \dfrac{1}{2}{\tan ^2}x + \ln \left| {\cos x} \right| + C.$


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

$I = \int {f(x)dx}  = \int {{{\tan }^5}xdx} $.

Đặt $\tan {\mkern 1mu} x = t \Rightarrow \dfrac{{dx}}{{{{\cos }^2}x}} = dt \Rightarrow ({\tan ^2}x + 1)dx = dt \Rightarrow dx = \dfrac{{dt}}{{{t^2} + 1}}$

Khi đó:

\(\begin{array}{*{20}{l}}{I = \int {{t^5}.\dfrac{{dt}}{{{t^2} + 1}}}  = \int {({t^3} - t + \dfrac{t}{{{t^2} + 1}})dt}  = \int {{t^3}dt}  - \int {tdt}  + \int {\dfrac{t}{{{t^2} + 1}}dt} }\\{ = \dfrac{1}{4}{t^4} - \dfrac{1}{2}{t^2} + \dfrac{1}{2}\int {\dfrac{{d({t^2} + 1)}}{{{t^2} + 1}}}  = \dfrac{1}{4}{t^4} - \dfrac{1}{2}{t^2} + \dfrac{1}{2}\ln \left| {{t^2} + 1} \right| + C}\\{ = \dfrac{1}{4}{{\tan }^4}x - \dfrac{1}{2}{{\tan }^2}x + \dfrac{1}{2}\ln \left( {{{\tan }^2}x + 1} \right) + C}\\{ = \dfrac{1}{4}{{\tan }^4}x - \dfrac{1}{2}{{\tan }^2}x + \dfrac{1}{2}\ln \left( {\dfrac{1}{{{{\cos }^2}x}}} \right) + C}\\{ = \dfrac{1}{4}{{\tan }^4}x - \dfrac{1}{2}{{\tan }^2}x - \ln \left| {\cos x} \right| + C}\end{array}\)

Hướng dẫn giải:

Đặt \(t = \tan x\) rồi tính \(dx\) theo \(dt\) và thay vào tìm nguyên hàm.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) nếu:

Xem lời giải » 3 năm trước 116
Câu 2: Trắc nghiệm

Biết rằng \(\int\limits_0^1 {x\cos 2xdx}  = \dfrac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)\) với \(a,b,c \in Z\). Mệnh đề nào sau đây là đúng

Xem lời giải » 3 năm trước 100
Câu 3: Trắc nghiệm

Cho hàm số \(y = \frac{{x - {m^2}}}{{x + 1}}\) (với m là tham số khác 0) có đồ thị là \(\left( C \right)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn \(S = 1\)?

Xem lời giải » 3 năm trước 90
Câu 4: Trắc nghiệm

Cho parabol \(\left( P \right)\) có đồ thị như hình vẽ:

Tính diện tích giới hạn bởi \(\left( P \right)\) và trục hoành.

Xem lời giải » 3 năm trước 88
Câu 5: Trắc nghiệm

Nguyên hàm của hàm số \(f\left( x \right) = \sin x + \cos x\) là :

Xem lời giải » 3 năm trước 88
Câu 6: Trắc nghiệm

Tính nguyên hàm $I = \int {\dfrac{{\ln \left( {lnx} \right)}}{x}{\rm{d}}x} $ được kết quả nào sau đây?

Xem lời giải » 3 năm trước 86
Câu 7: Trắc nghiệm

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?

Xem lời giải » 3 năm trước 86
Câu 8: Trắc nghiệm

Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:

Xem lời giải » 3 năm trước 85
Câu 9: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?

Xem lời giải » 3 năm trước 85
Câu 10: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{x}{{\sqrt {3{x^2} + 2} }}\).

Xem lời giải » 3 năm trước 84
Câu 11: Trắc nghiệm

Họ nguyên hàm của hàm số \(y=\cos 3x\)  là

Xem lời giải » 3 năm trước 83
Câu 12: Trắc nghiệm

Cho hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng \(x = 0,x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) được tính bởi:

Xem lời giải » 3 năm trước 80
Câu 13: Trắc nghiệm

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \sqrt {{{\ln }^2}x + 1} .\dfrac{{\ln x}}{x}\) thoả mãn \(F\left( 1 \right) = \dfrac{1}{3}\). Giá trị của \({F^2}\left( e \right)\) là

Xem lời giải » 3 năm trước 79
Câu 14: Trắc nghiệm

Cho hai hàm số \(y = f(x)\) và \(y = g(x)\) liên tục trên đoạn \(\left[ {a;b} \right]\) với \(a < b\). Kí hiệu \({S_1}\) là diện tích hình phẳng giới hạn bởi các đường \(y = 3f(x)\), \(y = 3g(x),\,\,x = a,\,\,x = b,\,\,{S_2}\) là diện tích hình phẳng giới hạn bởi các đường \(y = f(x) - 2,\,\,y = g(x) - 2,\,\,x = a,\,\,x = b\). Khẳng định nào sau đây đúng? 

Xem lời giải » 3 năm trước 79
Câu 15: Trắc nghiệm

Tính \(I=\int\limits_{0}^{1}{{{e}^{3x}}dx}\).

Xem lời giải » 3 năm trước 78

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »