Tọa độ giao điểm của đường thẳng $d:y = 3x$ và parabol $\left( P \right):y = 2{x^2} + 1$ là:
A.
$\left( {1;3} \right)$
B.
$\left( {\dfrac{1}{2};\dfrac{3}{2}} \right)$
C.
$\left( {1;3} \right)$ và $\left( {\dfrac{1}{2};\dfrac{3}{2}} \right)$
D.
$\left( { - 1; - 3} \right)$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Phương trình hoành độ $2{x^2} + 1 = 3x$.
$ \Leftrightarrow 2{x^2} - 3x + 1 = 0 \Leftrightarrow \left[ \begin{gathered} x = 1 \Rightarrow y = 3 \hfill \\ x = \dfrac{1}{2} \Rightarrow y = \dfrac{3}{2} \hfill \\ \end{gathered} \right.$
Vậy có hai giao điểm là $\left( {1;3} \right)$ và $\left( {\dfrac{1}{2};\dfrac{3}{2}} \right)$.
Hướng dẫn giải:
- Bước 1: Lập phương trình hoành độ giao điểm của đồ thị hàm số.
- Bước 2: Giải phương trình tìm $x$, rồi từ đó suy ra $y$ và tọa độ giao điểm.
Giải thích thêm:
HS thường nhẩm sai nghiệm của phương trình dẫn đến chọn sai đáp án D, hoặc một số em thử đáp án A hoặc B thấy thỏa mãn thì vội vàng chọn ngay A hoặc B là sai.
Phương trình hoành độ $2{x^2} + 1 = 3x$.
$ \Leftrightarrow 2{x^2} - 3x + 1 = 0 \Leftrightarrow \left[ \begin{gathered} x = 1 \Rightarrow y = 3 \hfill \\ x = \dfrac{1}{2} \Rightarrow y = \dfrac{3}{2} \hfill \\ \end{gathered} \right.$
Vậy có hai giao điểm là $\left( {1;3} \right)$ và $\left( {\dfrac{1}{2};\dfrac{3}{2}} \right)$.
Hướng dẫn giải:
- Bước 1: Lập phương trình hoành độ giao điểm của đồ thị hàm số.
- Bước 2: Giải phương trình tìm $x$, rồi từ đó suy ra $y$ và tọa độ giao điểm.
Giải thích thêm:
HS thường nhẩm sai nghiệm của phương trình dẫn đến chọn sai đáp án D, hoặc một số em thử đáp án A hoặc B thấy thỏa mãn thì vội vàng chọn ngay A hoặc B là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Công thức nào sau đây không đúng khi tính diện tích toàn phần hình trụ?
Tập hợp tất cả các giá trị của m để hàm số $y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} + 2\left( {m - 1} \right)x - 2$ luôn tăng trên $R$
Điều kiện để hàm số bậc ba không có cực trị là phương trình $y' = 0$ có:
Cho hàm số \(y=\dfrac{2x+1}{x-2}\). Khẳng định nào dưới đây là đúng?
Phép đối xứng qua mặt phẳng \(\left( P \right)\) biến điểm \(M,N\) thành \(M',N'\) thì:
Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:
Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Cho hình trụ có bán kính đáy bằng \(a\). Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng \(\dfrac{a}{2}\) ta được thiết diện là một hình vuông. Tính thể tích khối trụ.
Cho hình lập phương \(ABCD.A'B'C'D'\) tâm \(O\). Phép dời hình nào không biến hình vuông \(ABCD\) thành hình vuông \(A'B'C'D'\)?
Số điểm cực trị của hàm số $y = {(x - 1)^{2017}}$ là
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
Anh A mua nhà trị giá ba trăm triệu đồng theo phương thức trả góp. Nếu cuối mỗi tháng, bắt đầu từ tháng thứ nhất anh A trả 5.500.000đ và chịu lãi suất tiền chưa trả là 0,5%/tháng thì sau bao nhiêu tháng anh A trả hết số tiền trên.